dc.contributor.author |
Averchev, О. |
|
dc.contributor.author |
Osinnii, О. |
|
dc.contributor.author |
Lavrenko, S. |
|
dc.contributor.author |
Lykhovyd, P. |
|
dc.date.accessioned |
2024-01-09T08:21:28Z |
|
dc.date.available |
2024-01-09T08:21:28Z |
|
dc.date.issued |
2023 |
|
dc.identifier.citation |
Osinnii, O., Averchev, O., Lavrenko, S., & Lykhovyd, P. (2023). Modeling drip-irrigated rice yield using normalized difference vegetation index: a preliminary study. International Conference “Agriculture for Life, Life for Agriculture”. Book of Abstracts. Section 1. Agronomy. (Bucharest, 2023). (pp. 132). |
ru |
dc.identifier.issn |
2457-3205 (PRINT) |
|
dc.identifier.uri |
http://hdl.handle.net/123456789/8714 |
|
dc.description.abstract |
Rice is one of the major food crops with a growing demand on the global market. The need for water-saving and environmentally friendly technologies presses current agricultural science to look for alternative ways of rice irrigation. The most prospective one is drip irrigation. Yield prediction is also of great importance for sustainable agriculture. |
ru |
dc.language.iso |
en |
ru |
dc.publisher |
University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Agriculture, Romania |
ru |
dc.relation.ispartofseries |
Section 1: Agronomy; |
|
dc.subject |
artificial neural network, |
ru |
dc.subject |
regression |
ru |
dc.subject |
remote sensing |
ru |
dc.subject |
statistics |
ru |
dc.subject |
yielding scale |
ru |
dc.title |
Modeling drip-irrigated rice yield using normalized difference vegetation index: a preliminary study |
ru |
dc.type |
Thesis |
ru |