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OPTIMIZATION OF AIRCRAFT BEARING SURFACE BASED
ON THE SOLUTION OF COUPLED EQUATIONS

The rational choice of bearing surfaces shapes is the main task when designing subsonic aircraft. The
successful choice of the bearing surface shape to a great extend derivate the obtainment of high aerodynamic
characteristics of the bearing surface and the vehicle as a whole.

Nowadays methods of aerodynamic design can be divided into experimental and numerical. Experimental
methods are based on the results of numerous experiments and the obtained experience of the researcher. This
approach is a high cost one, time consuming and does not guarantee an ultimate towards the solution of aero-
dynamic design problems. Numerous methods are based on the use of the mathematical tool of fluid mechanics
and make it possible to define the optimal shape for a given flow state. These methods are at a low cost, faster
and permit to find the optimal solution.

The research investigates the task of optimizing bearing surfaces for a stationary incompressible viscous
fluid flow, which is characterized by average according to Reynolds — Navier-Stokes equations.

Nowadays numerical methods of aerodynamic design can be divided into two groups: inverse methods and
optimization methods.

Inverse methods make it possible to define the aerodynamic shape for a given pressure or velocity distribution.

Unlike inverse methods, numerous optimization methods do not require a specific pressure or velocity field
and can be formulated for a wide range of aerodynamic design problems. They can be divided into two groups:
without gradient and gradient methods.

The most effective in the group of gradient methods is the method based on the solution of coupled equa-
tions. It allows to calculate the gradient by means of singelfold solved direct problems and coupled equations.
Meanwhile, the time spent on calculating the gradient does not independent of the number of design variables.

Key words: method, solution of coupled equations, reference, gradient, optimization, bearing surface.

Statement of the task. Functional limitations

R(w,s) is the Navier-Stokes equation for a two-dimen- G; = “[
sional stationary incompressible viscous flow. Let’s
mark cartesian reference as x,, x,, and the components
of the velocity vector —u,, u,, we will also consider a

ou. (3uj
et AR A I 1.
axj " 6x,j’ ( 3)

p — pressure; p — density; u — dynamic viscosity.
A vector is taken as the variable flow field w(s):

summation for indices which are repeated i(i=1,2). b
Then the Navier-Stokes equations can be represented w= {”1} (1.4)

as follows: U
/Rl 0 (1.1) For further derivation of the coupled equations,
where ox, o, the vector equation (1.1) must be represented in the
u; 0 computational space with the reference &, &, such
fi=puu + pd, v, f =408, ¢, (1.2)  that the contour of the body which is investigated lies

pui, + pd,, 6,8, on the axis &, (Fig. 1).
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Fig. 1. Physical and computing areas

In order to represent the Navier-Stokes equations
in the computational coordinate system, we have the
following correlations:

X, = X, (&1:&2);§i =§, (xlﬂxz);

ox,
= —ldg + —Ldg,
o, T oe,

(229 ox
dx, = =—2d —2d
2 2, & + 2, %z

dél = @d‘xl + %dxza
ox, 0x,

ox,
1

(1.5)

(1.6)

dg, = % dx, + % dx,
X, 0x,

Let’s solve the system (2.5) regarding d&,, d&,
then we will obtain

deJ = 2 qx + Pigy

de,J = *%dxl +% 2
%, a -
where J — transition is determined according to formula
o
Jo| G|y 0% g
X, 0x| 05 05, G5, O
g, 05,
On the basis of correlations (1.6) and (1.7) we obtain
98, J= [ 258 J = _ox .
o, og,’ ox, o,
Loy 20, Ly & (19
o og ox, G

Equation (1.1) can be putted down in the compu-
tational reference as follows

LT AT
d¢, ox, %, ox,
Multiply equation (1.10) by J and use correlation

(1.9), then we will obtain

(1.10)

0 08, 0&, 05 0%, 0%, 0%, 0%,
o€, 0t, 0&, 3%, 0%, &, &, 0% )

or
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oF, .oF’

& &,
F=S,f; — convective flow;
F'=S,f; — diffusion flow;

S.u, 0

/A

-0, (1.11)

F =3Spuu +Spr, F =180+, (1.12)
S;puuy +S,p 8,0,
0 0
s=| & (1.13)
_ox 0%
o, g

Thus, the constraint functions can be written as
R=0E_9F
o, g

We will obtain a variation of the constraint func-
tions dR(w,s). According to the fact that in the com-
putational space the shape of the body and, accord-
ingly, the area D, remain unchanged with variations
of the shape in physical space, then for any point of

the computational area D, can be put as follows:

8R=R(w+3w,s+385)— R(w,s)=

(1.14)

OF, (w+ 8w, s + 8s) R (w +dw,s + 8s) _[oF, (w,s) R (w,5)
%, [ 0, %,

=6%1(1",(“’*5%5*55)*E(W,S))*aié”(]‘:"(W+5W,S+55)7F,“(W’S))=0’
or

o _oloE) 26E)
g, g,
Let’s put down the variations of flows as follows
OF =08F, +8F,,0F" =8F +3F), (1-16)

where the variations with the index | are the contribu-
tions related to the change of the variables of the flow
field ow, and with an index Il — contributions related
to the change in body shape Js.

Let’s consider objective functional I, which can be
represented as an integral outside the margin By,

I=[M(w,s)dB., (1.17)

(1.15)

where B,,, — body contour in computing space;

M(w,s) — subintegral function of cost functional.
The type of the subintegral function depends on the
particular formulation of the optimization task. The
expression for the variation of the cost functional can
be represented as follows:

51 = [3MdB.. (1.18)
B.

We multiply equation (iw.15) by the vector of
Lagrange multipliers at each point of the area and
integrate along it, as a result we obtain:
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[¥" 2 (sF-8F)dD. =0,  (1.19)
A
where
dD, - dz.de,

Let’s assume that the function v is continuous and
differentiable, then integrating the expression (1.19)
by parts and applying the Gauss theorem, we have

0 v
l{‘*”g(“? ~8F)dD, =

i

—jn»\lﬂ (3F, - 5F")

)dD. =0, (1.20)

Slnce the express1on (1 20) is equals zero, it can
be subtracted from the expression for the variation of
the cost functional (1.18) and obtain

8l = jaMdB jn W' (8F, - 5F)dB, +j (8F -8F")dD..

Based on the assumption that at the outer bound-
ary of the area of flows variation which is considered,
as aresult of the change in the shape of the body equal
zero, can be shown as follows:

81 = [ [8M —npw" (5F, - 5F)] T (8F - 8F")dD.

By

Going forward, the following representation of the
variation of the cost functional will be more convenient

oy’

81 = B{w [0M —niw" (8F,~8F")|dB, + Dj a—g(éﬁ, - 8F;)dD, +
o
| 7 (8F, —8F;)dD., . (1.21)

D, i

It is necessary to find such functions v, that the first
two integrals of expression (1.21) became zero. Let’s
transform the second integral of expression (1.21)

OV (55, - oF;)dD, = [ X sF,dp, - [ 2L (1.22)

pode, T e T e,

Let’s examine the first integral on the right side
of the expression (1.22). According to the correlation
(1.12), we state

vdD..

3F, =8(S, /) =8S,f ;+S;5f;,
because at each point in the computational space
D.f;=1;(w),
then
6f, g, _
o, = Low, that’s why £ =s,=Lew; 8F, =3S,f,, (1.23)

Where
dp
ow =| duy,
du,

(1.24)

Let’s define the components of vector dF},. Accord-
ing to the correlation (1.12), we state

S,8u, + S,8u,
S, (2pudu, + 3p) + Sy, (pu,duy + pudiy) ¢
S (pu,8u; + pudu,) + S, (2pu,du, + 8p)

SF = (1.25)

then the first integral on the right side of the expres-
sion (2.22) can be represented as follows

Ia\PTSFdD j Vo + Ysg |spdD, +
il 3 il o, iz | OPAL

| { 1, + 2 5“’2 (5,20 + Spie) + a‘g Slpuz} =sudD, +

+ { S
Let’s consider the second integral on the right side
of the expression (1.22)
oy’
) I 2,
Let’s determine the contribution from the viscous
terms of the equations of motion to the coupled equations

-] S (88,0, + 5,80, ) D
&

. ouy 04
g =K ox; ox, )
The velocity derivatives can be represented as
ou, _ou; o€, Sy ou
ax, g ox, J o,
Then for variation of stress, we obtain

s, S,
8oy =p| L 2 su, + Si 0 2 suy |+ | 5] 2L |
JaE T 5 7))

or

D; i

i

nPU + (Slpul + S:zzpuz)} du,dD, (1 26)

SEydD, .

D;
where

o(3)%)

8o, = doy, + doy, (1.27)
where
SG,Q. =u —lji&lk +S”‘ 0 u; |;
J &, J &,

o ﬂ ou, S,kjau
doy; “{8(-]}5@ +8( z, | (1.28)

Thus, it can be represented as follows:
5FJ‘=0; 8F} =0

8F); = 8S,0,; + 8,80/ ;

1j°

=S,30,;

=S, 602/ ; SF) =38, 102, TS doll

7 (1.29)

Taking into consideration, the obtained correlations,
the contribution from the viscous terms of the equations
of motion to the coupled equations is represented as

S,
LS [—i&lk +i18u JdDé.
o

e (1.30)

7_[—8FdD = j
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Integrating the expression (1.30) by parts and
using the Ostrogradsky-Gauss theorem, we obtain

)
- a(D"S [ 0 —du, + S 0 — du; JdDé_
5 0. J %, J G,
S,
- [ %% nS; ( Z’Suk+S”‘5ul.]dB§+
3 O J J

T e, T e,

"We consider that the integral along the bound-
ary becomes zero, since the variations 6uk=0 on the
boundary. Also, replacing the corresponding indices
in the last two integrals, we have

+je3u 5,8, L% lap, +jau 5,85, 2% lap,_
fag, b0

. 0 S, oo, S, 0D,
j —SF,,dDE = [u ag[s’f“ [Jjak + Jkal]
i D, I & &

db,

We will note that

aS/j —

g,
S; 00, _ 00,
J oo, ox;

then we will get

dD.

ja 8FydD, = jesuk[ 0 ..

op, 00,

% %a“[ +m]]
D; k

The obtained coupled equations do not depend
on the form of the objective functional and can be
used to solve volitional two-dimensional problems of
optimizing aerodynamic shapes for an uncompressed
stationary viscous fluid flow.

Main material presenting

To solve the coupled equations, it is necessary to
set boundary conditions which can be obtained from
the first integral of the expression (1.21)

i

[ [8M —niw” (8F, - 5F")]dB..

By

(1.31)

As an example, let’s consider three different cost
functionals and will obtain from expression (2.31) the
corresponding boundary conditions for the coupled
equations.

Let’s assume that the cost functional will be the
resultant force vector acting on the bearing surface,
projected in a certain direction

I=Xq+Y4,=¢q I”j(sjlp - G_/l)dB +4, J-n,(sjzp - U,z)dB, (1 32)
B, B,

where

B,, — contour of the body in physical space;

n; — vector of the normal towards the element dB
in physical space.

Let’s imagine the expression (1.32) as an integral
along the boundary in the computational space. The
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normal vector n towards the contour of the body can
be represented as

or = - 6x2 - 6x1
Tk T
7= ok, _ o8, 08, __ 18, +JSy TO6TO
o A Temy (o] P
%, o ) "\,

S,
n, = |S| JIE |8,| = \f5y55-

The element dB can be represented as

dB = | de, «

3&1
Thus, the cost functional can be written as

I =g IS2/(8,1P G/l)d&:l q, J-S2j(6jzp G,z)d§1 (1 33)
Accordmg to the expresswn (1.17)

_|or ok
0E,

dg, = |s2| dg, .

M (w,s)=-4,S,; (8ﬂp - cs,.,) - 4,5, (6,.217 - cs/.z);dBé =dg,. (1.34)
Expression (1.31) can be represented in the form

[ [8M —niv" (3F, - F')]dB, = j [8M —y'5(F, - F)|de, =

B,

2, ,1 d(il - _[‘12

_[Wz

2,17” Uy +.8,p — S2j6j2)d§1'

:—J‘Il Sup - 22p_SZjGj2)dal +

2jpu u +8,p -

+I\V1 $,;PU; dél 2/ jl)dél

+ I V30
B,
Let’s consider the boundary conditions for the
fluid motion equations u=0, then we will obtain
J [0 w5 (F, - F7)]dz, -
Bs‘.

—.[41 Sp - 2, G dé] - qu Sp - SZ/G/Z)dgl + (1 35)

J\vz

Upon solving the system of coupled differential
equations with the obtained boundary conditions, the
variation of the cost functional can be calculated as

+J.‘V2 Sup- 2, jl d‘%l Syp - S2j6_/2)d§1

By

61 = | N (5, —sFy)dD.  (1.36)
b 08

Variation of flows can be represented as below

aF oF’
3F, = i = as ds

Then the expression (1.36) can be given the form

[6F oF, stdDg
os

Daﬁ

Let’s consider how the next task of optimization
maximizes the aerodynamic quality of the bearing
surface, i.e. the cost functionality
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=t
Xa
Let’s write down a variation of this functional:
sl =5|-to|o_ Loy Yosx -
Xa X{l X{l

Y 1
= —X7a2 Is(szlp - Szjcjl)dél + X .[B(SHP - szjc_,-z)d§1.

a B, a B,
According to expression (1.31), we obtain
[ [8M —npy" (SF, - 5F)]dB, =
B,

=_I 2117

1
z, jl)dal j YS(SZZP_SZjGjZ)dél +

B, a

+ JWZS(SNP 2j /1 d(tvl + J“Vw3 2, jz)d‘il
B, By
From this equation can be seen, that if we accept

Y, 1

Y, = X2 »W3 = 7
on the boundary of the ob] ect, then the integral which
is considered will turn to zero. As in the previous
problem, the multiplier y, on the boundary of the
object and multipliers v, 1 y; on the outer boundary
can be chosen randomly. Having solved the coupled
equations with the obtained boundary conditions, the
variation of the cost functional can be calculated by
formula (1.36).

As an example, let’s consider another definition
of the profile optimization problem. It is necessary
to minimize the module of the aerodynamic moment
[M,|, current on the profile with respect to the point
with coordinates (X,,Y,). The corresponding cost func-
tional can be represented as follows

IZ%MZZZ%‘:;,[()C x,)n; (Slzcjz)dB I(y Vo)t (Sj,p o; )a’B} =

B,

2
|:J. y J’o 2 ,1P’011)d&1* _[ (xxo)sz,'(sjzl’“,-z)d§1:| .
B

B,

Let’s write the variation of the cost functional as

8l = Mz|:_“ (y*YO)S(SuP 20 jl)dEu - I (x*xo)s(szzp*‘S‘2,‘5,’2)d‘21:|+

+M {J.By Sp— 2, O d&]‘ I8x S$p - 2, 12)d§1:|
From expression (1.31) we - obtain

[[8M - niy" (SF, - 5F")|dB. =

B

= _[M (y—y0)5(521p 2,01 dél_ JM X = xo)s(szzp_sz/'cjz)dél"'

B,
IW3

21 ,1 dé]_ Jﬁx Syp - SZjGjZ)dal .

+I‘l’2 Syp - 2, G dEA Syp - S2j6j2)dg.>l+

+M, ISy Szlp

The same as in the preV10us task, multiplier v,
on the boundary of the object and multipliers v, v,
and y; on the outer boundary can be chosen ran-
domly. Having solved the coupled equations with the
obtained boundary conditions, the variation of the
cost functional can beTcalculated via formula

81 = i‘z‘g(aﬁn —0Fy,)dD, +

i

+M, '[By(Szlp Y /1 dal JBx Syp -

BEW BEW

Conclusions. Numerous optimization methods,
together with methods of computational hydro aerody-
namics, make it possible to find such an aerodynamic
shape that delivers a minimum of the cost functionality
under given functional limitations. Cost functionality
can be drag, aerodynamic quality, pressure ratio. Dif-
ferent types of aerodynamic or geometrical limitations
can act as functional limitations, such as given lifting
force, volume or area of the object that is needed to be
optimized.

The boundary conditions of the coupled equations
can be obtained for many other tasks of bearing sur-
faces optimization.

SZ.[G/Z)daI
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Parynin C.B., lllapadaiiko O.M., Jlo3zoBcbknii B.I. OIITUMIZAIIA ®OPM
AEPOIUHAMIYHHUX MMTPODLIIIB JITAJIBHUX AITAPATIB
HA OCHOBI PO3B’sI3AHHSA IMTOB’SI3AHUX PIBHSIHb

IIpu npoexmysanni 0036yKOSUX NIMAKIE GAXMCIUBUM 3A80AHHAM € PAYIOHANbHUL 6UOIp (PopM Hecyuux
noeepxons. Boanuti eubip gopmu Hecyuoi nosepxwi, 3HAUHOI MipOI0 0OYMOBNIOE OMPUMAHHA BUCOKUX
AepOOUHAMIYHUX XAPAKMEPUCIMUK HECYHOi NOBEPXHI I anapamy 6 Yiiomy.
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CyuacHi mMemoou aepoouUHaMiuH020 NPOEKMYSAHHI MONCHA NOOLIUMU HA eKCNEPUMEHMATbHI MA YUCETbHL.
Excnepumenmanvii memoou cRUpaiomvyCsi Ha pe3yibmamu YUCIeHHUX eKCRePUMEHMIE ma 00C8I0 O0CIOHUKA.
L]eti nioxio € dopocum, UMPAMHUM 30 YACOM MA HE 2aPAHMYE OMPUMAHHSL ONMUMATLHO20 PO38 A3AHH 340aY
AepoOOUHAMINHO20 NPOEKMYB8aHHs. TUCieHHI MEMOoOU 3ACHOBAHT HA BUKOPUCMAHNI MAMEMAMUYHO20 anapanty
MeXauiKu piounu ma 2azy ma 00360Js0Mb GUIHAYUMU ONMUMATLHY opmy Olsl 3a0an020 pexcumy meyii. i
Memoou € demesuuUMU, WUEUOKUMU [ 00360JSII0OMb 3HAXOOUMU ONMUMATbHE PDIUeHHS.

Y pobomi pozensdacmvca 3asdanns onmumizayii  aepoouHamiyHux npo@inie 0ns  cmayioHapHoi
HeCmucKaemoi 8 ’s3koi meyii piounu, wo onucyemuocs cepedninu no Petinonvocy pisusnuamu Hasve-Cmokca.

CyuacHi uucenvHi Memoou aepoOUHAMIYHO20 NPOEKNYSAHHS MONCHA NOOLIUMU HA 081 2PYNU. 360POMHI
Memoou ma npsimi Memoou onmumizayii.

360pomui memoou 003801410Mb 3HAUMU AECPOOUHAMIYHY POPMY 3d 3A0AHUM PO3HOOLIOM MUCKY A00
UWBUOKOCL.

Ha iominy 6i0 360pomuux memoois, uuceibHi Memoou OnmumMizayii He 6UMa2aroms Ne6HO20 NOJsL MUCKY A00
WBUOKOCTT T MOJAICYMb OYymMu COPMYIbOBAHT OJI WUPOKO2O KAACY AEPOOUHAMIYHUX 3A80AHb NPOEKNTYEAHHSL.
Ix mooicna nodinumu na 0si 2pynu: 6esepadicumui ma epadicHmmi Memoou.

Haiibinow epexmusnum y epyni epadicHmnux memooie € Memoo Ha OCHOBI PO38 "S3aHHS MO8 SA3AHUX PIGHSHD.
Bin 0ozeonse obuuciumu epadienm 3a 00nomo2ot0 00OHOPA3060 BUPIUEHUX NPIMUX 3A60AHb [ M08 SA3AHUX
pisusanb. Ilpu yvomy uac, wo 6umpayaemscs Ha OOYUCTEHHS 2PAOIEHMA, NPAKMUYHO He 3AanedCUums Gi0
KIIbKOCMI NPOEKMHUX 3MIHHUX.

Knwwuogi cnosa: memoo, po3é’si3anns no8 s13aHux pieHsHb, CUCMEMA KOOPOUHAM, epadicHm, Onmumizayis,
aepoouHamivHuil npoghine.
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