
Investigation of Free Vibrations of Three-Layered Circular Shell,  
Supported by Annular Ribs of Rigidity 

Mykola Surianinov1,a, Tetiana Yemelianova2,b,  
Oleksii Shyliaiev1,c 

129 Didrihsona, 4, Odessa, 65029, Ukraine 
229 Kulik Street, 260, Kherson, 73026, Ukraine  

asng@ogasa.org.ua,   be.tatyana.2014@ukr.net, cshyliaiev@gmail.com  

Keywords: three-layer shell, light-weight aggregate, rigidity, frees vibrations, shift parameter, 
rigidity parameter, curvature parameter, first frequency of free vibrations. 

Abstract: The construction of a mathematical model and the development of an algorithm of free 
vibrations investigation in the three-layered circular shell with a light-weight aggregate supported 
by annular rigidity ribs are considered in paper. The hypotheses of Kirchoff-Lyav are accepted for 
external bearing layers of shell and for aggregate there is accepted the linear law of tangential 
displacements change by thickness.  

The boundary conditions of a shell region closed between the ribs are established. Using the 
boundary transition, conditions along the lines of the ribs, taking into account and without 
deformations of displacement in the ribs, but without taking into account the torsional rigidity in the 
ribs are determined. The equation of motion of supported three-layered shell is obtained. The 
frequencies of free vibrations were investigated and values of parameter of the first frequency of 
free vibrations for a shell, supported by one and three rigidity ribs, were calculated. There are given 
values depending on the physical and mechanical properties of materials and geometric dimensions 
of the shell, the curvature parameter, and the rigidity parameter of an aggregate. 

Introduction.   
Increasing the level of building industrialization requires the use of new efficient types of 

light economic construction structures. The three-layered shell based on hard-core styrofoam or 
oriented mineral wool and sheet materials is the best option of a durable and rigid construction. The 
three-layered shells with a lightweight aggregate are used in the construction, aviation and other 
industries widely. The three-layered shell consists of two external bearing relatively thin layers 
made of a durable material, between which a sufficiently thick layer of low-strength material with a 
small volume weight is placed. This layer is called an aggregate.  Three-layered structures are 
distinguished by the type of filler, the material of bearing layers, the method of connection. 
Lightweight aggregates can be: oriented mineral wool, styrofoam, single and double corrugated 
tubes, tubular aggregate and so on. Such a widespread using of three-layered shells is explained by 
their high weight characteristics, which allow with the same weight to withstand significantly 
higher loads than can withstand single-layered.  

Formulation of the Problem.   
For such structures, the solution to the problem of free vibrations is essential.  Information 

about the first frequency of free vibrations is necessary for solving many problems of dynamics. 
Significant numbers of works are devoted by calculations on free vibrations of three-layered 
unsupported shells [1-7].  

The questions of vibrations of three-layered shell construction, supported by ribs of rigidity 
[8, 9, 10], are highlighted insufficiently.  
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The aim of the work is to build a mathematical model and development an algorithm for studying  
free vibrations of a three-layered circular shell with a light aggregate, which is supported by annular 
rigidity ribs with hinge supporting of  edges.  

Materials and Methods.  
Using the variational principle of Ostrogradsky-Hamilton, the variational equation of 

transverse vibrations of a three-layered shell of a symmetrical structure was obtained. The three-
layered shell, supported by ribs in two mutually perpendicular directions, taking into account action 
of longitudinal forces in the planes of outer layers and ribs, was considered. The hypotheses of 
Kirchoff-Lyav was adopted for external bearing layers, and for an aggregate and ribs the linear law 
of tangential displacement changes in thickness was taken and the bend of the ribs in the vertical 
plane was taken into account [11]. 

The boundary conditions of the region of a shell closed between the ribs are established. 
Using the boundary transition, conditions along lines of the ribs, taking into account and without 
account deformations of displacement in the ribs, but without taking into account torsional rigidity 
of the ribs are obtained. 

Research Results.   
Let's consider free vibrations of a three-layered circular shell with a light transversally 

isotropic aggregate, supported by ring ribs of rigidity. The distance between the ribs, as well as 
rigidities of the ribs, is considered to be the same. At the same time, the ribs are symmetrically 
relatively to median surface of a three-layered shell (Fig. 1). 

 

 
 

Fig. 1. Three-layered circular shell supported by annular ribs scheme 
 
Differential equations of bending vibrations of a shell area, that is closed between the ribs, 

has a the form [11] 
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 System of equations (1) and (2) is reduced to one solving equation (4) by introducing into 
consideration of function F (x, y) [12]: 
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In equations (1) – (4) is denoted: 

( )2
;

1
EB δ

µ
=

−
    * 22 ;D BH=    ( )

3

2
;

12 1
ED δ

µ
=

−
    0,5 ;H h δ= +      

2
2

2
3

1 ;B Bh F
R x G

 ∂
Φ = − − ∇ ∂  

 

4 ;Fφ = ∇     ( )2 ;об н зm hρ δ ρ ⋅= ⋅ + ⋅   −h2,δ the thickness of an external layers and an aggregate. 
  

Solution of solving equation (4) for area of shell closed between the ribs we will find for 
using a function: 
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Substituting indicated function (5) into solving equation (4), we obtain a differential equation which 
defines function f1(х): 
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Solutions of a differential equation (6) we will find in the form: 
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xf x eη=                                                                                                                                     (7) 

 
Substituting a function (7) into differential equation (6) and shrinking on хеη , we obtain 
characteristic equation which corresponds to differential equation (4): 
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Finally, a function F (x, y) is written as: 
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In equations (7 - 9) is denoted: 
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1 2 1 2, , ,r dtg tg s r c d

s c
φ φ ρ ρ= = = + = +    – here  s, c – are valid ,  and   r, d – are 

complex roots of the characteristic equation. 
 
Solutions of equation (3) we will find in the form: 

( )2 cos nf x y
R
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Substituting a function (10) into equation (3), we obtain a differential equation for 
determining of the function f2(x).  Solving this equation, we obtain: 
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We write the boundary conditions for the case of free support of the shell, assuming that 

diaphragms are installed on edges of the shell:  
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We will accept for every area its coordinate axes [13].  The origin is located in the start of 

area and  function f1(x) in the starts and in the ends of area (for x = 0 and х=а1, where  а1=а/m,  m – 
number of areas) is denoted as and , second derivative  f1

’’(x) as and  fourth 
derivative  f1

IV(x) as and  sixth derivative f1VI(x) as  and  second derivative  f2’’(x) 
as and  

In [14], the authors derived a system of equations for the determination of arbitrary 
constants Ci of solutions (9) and (10), which can be applied to this research: 
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By revising of (k-1) area we accept the origin of coordinates at its end and direct the axis x 
to the opposite direction. Then for it f1(x) and f2(x) will have the same form as on the k area, and 
arbitrary constants (let’s denote them as Сік-1) will be determined from (11), if we will change in 
them 11111 ,,,, +++++ kkkkk ϕξζµη  by .,,,, 11111 −−−−− kkkkk ϕξζµη  

Conditions on the lines of the annular ribs are written as: 
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Here  .pkD
RD

γ ∗=   

Substituting into (14) the value of Ci, we obtain a system of equations in finite differences. 
Unknown, which belong to this system, must satisfy the conditions for k=0 and k=m. 

Conditions on the edges of a free-supported shell can be written as: 
000000 ========== mmmmm ϕξζµηϕξζµη                                                  (15) 

where m-1 is the number of ribs that support the shell. 
Solution of a last system we will found in the form: 
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which satisfy  boundary conditions (15) along an edges of the shell. 
 Here   1 1s m≤ ≤ − . 

 
Equating determinant, which consists of coefficients at A, B, C, M, L, to zero we will get 

frequency equation of three-layered circular shell, which is supported by regular ring ribs, with 
hinge supporting of an edges. In the tables 1, 2 there are given values of parameter of first 
frequency of free vibrations mω of circular shell, supported by one and three ribs. 

 
Table 1. Values of parameter mω for shell, which is supported by one annular rib  

 
𝑎𝑎
𝑅𝑅

 
γ = 1     γ = 2     γ = 3     

k0 k0 k0 
0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,4 

1,0 7,558 6,946 6,341 7,558 6,947 6,344 7,559 6,951 6,346 
7,551 6,939 6,330 7,551 6,939 6,340 7,551 6,948 6,337 

2,0 7,559 6,948 6,344 7,560 6,948 6,344 7,561 6,954 6,347 
7,551 6,941 6,339 7,552 6,939 6,338 7,554 6,943 6,335 

3,0 7,561 6,956 6,344 7,563 6,968 6,345 7,563 6,968 6,347 
7,552 6,950 6,337 7,555 6,962 6,335 7,551 6,959 6,329 

4,0 7,565 6,958 6,345 7,566 6,971 6,345 7,567 6,971 6,348 
7,556 6,949 6,338 7,549 6,958 6,339 7,558 6,962 6,340 

 
Table 2. Values of parameter mω for shell, which is supported by three annular ribs 

 
𝑎𝑎
𝑅𝑅

 
γ = 1     γ = 2     γ = 2     

k0 k0 k0 
0,2 0,3 0,4 0,2 0,3 0,4 0,2 0,3 0,4 

1,0 7,052 6,463 5,922 7,058 6,465 5,928 7,068 6,467 5,932 
7,035 6,445 5,902 7,046 6,452 5,911 7,054 6,453 5,921 

2,0 7,057 6,465 5,924 7,064 6,469 5,931 7,082 6,469 5,935 
7,043 6,453 5,909 7,048 6,451 5,920 7,071 6,452 5,924 

3,0 7,068 6,468 5,932 7,069 6,473 5,940 7,089 6,472 5,943 
7,052 6,454 5,919 7,054 6,462 5,935 7,075 6,459 5,933 

4,0 7,102 6,474 5,943 7,108 6,485 5,951 7,110 6,516 5,953 
7,092 6,467 5,929 7,083 6,464 5,940 7,102 6,507 5,934 
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Conclusions.   
Thus, a mathematical model is constructed and an algorithm for investigating free vibrations 

of a three-layered circular shell, supported by annular ribs of rigidity, is developed. It is established 
that at number of ribs increase the frequency of free vibrations increases (or decreases) to a certain 
limit, after which the further number of ribs increase does not lead to an increase in the frequency 
vibrations of this form. At bending rigidity of ribs increase, the frequency of free vibrations 
increases to a certain limit, after which it remains constant and equal to frequency of free vibrations 
of the shell closed between ribs.  At shear parameter increase frequency of free vibrations reduces 
and the Reisner’s edge effect has no significant influence at any value of this parameter. 
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