

ONLINE

www.sworldjournal.com

D.A.Tsenov Academy of Economics - Svishtov (Bulgaria)

Indexed in INDEXCOPERNICUS (ICV: 87.25) GOOGLESCHOLAR

Sour haf

Issue №18
Part 2
March 2023

ISSN 2663-5712 DOI: 10.30888/2663-5712

UDC 08 LBC 94

Editor: Shibaev Alexander Grigoryevich, Doctor of Technical Sciences, Professor, Academician

Scientific Secretary: Kuprienko Sergey, PhD in Technical Sciences

Editorial board: More than 200 doctors of science. Full list on page: https://www.sworldjournal.com/index.php/swj/about/editorialTeam

Expert-Peer Review Board of the journal: Full list on page: https://www.sworldjournal.com/index.php/swj/expertteam

The International Scientific Periodical Journal "SWorldJournal" has gained considerable recognition among domestic and foreign researchers and scholars. Today, the journal publishes authors from from different countries.

Journal Established in 2018. Periodicity of publication: twice a year

The journal activity is driven by the following objectives:

- Broadcasting young researchers and scholars outcomes to wide scientific audience
- Fostering knowledge exchange in scientific community
- Promotion of the unification in scientific approach
- Creation of basis for innovation and new scientific approaches as well as discoveries in unknown domains

The journal purposefully acquaints the reader with the original research of authors in various fields of science, the best examples of scientific journalism.

Publications of the journal are intended for a wide readership - all those who love science. The materials published in the journal reflect current problems and affect the interests of the entire public.

Each article in the journal includes general information in English.

The journal is registered in the INDEXCOPERNICUS, GoogleScholar.

UDC 08 LBC 94

DOI: 10.30888/2663-5712.2023-18-02

Published by: SWorld &

D.A. Tsenov Academy of Economics

Svishtov, Bulgaria

e-mail: editor@sworldjournal.com

Copyright © Authors, scientific texts 2023

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-021
DOI: 10.30888/2663-5712.2023-18-02-021

UDC 556.53:547.5 (282.247.32)

ASSESSMENT OF THE KEY FACTORS OF THE EXPECTED DETERIORATION OF THE ECOLOGICAL CONDITION OF THE LOWER DNIEPER IN THE MODERN PERIOD DUE TO THE VIOLATION OF THE REGULATED RIVER WATERS FLOW REGIME

Korzhov Ye.I.

PhD of Geographical Sciences. ORCID: 0000-0003-2677-5296

Honcharova O.V.

PhD of Agricultural Sciences, as.prof. ORCID: 0000-0002-9702-7458

Kherson State Agrarian and Economic University, Kherson, Stretenska 23, 73006

Abstract. In the article, an assessment of the potential negative ecological consequences for the territory of the Lower Dnieper and the Dnieper-Buh mouth region, which should be expected in the coming years under the influence of man-made disruption of the regime of regulated river water inflow and a significant decrease in the water level in the water system of the studied region, was carried out. The impact of a decrease in the water level, an increase in its salinity, the arrival of a significant amount of pollutants from the Kakhovka Reservoir and a number of other abiotic factors on the future development of the water ecosystem of the region was analyzed. On the basis of the analyzed materials, the main ways of avoiding the deepening of negative ecological consequences caused by the violation of the water regime on the Lower Dnieper were determined.

Key words: water regime, water level drop, hydrobionts, ecological hydrology, Kakhovska HEPS, Lower Dnieper, Dnieper-Buh mouth region

Introduction. Since the middle of the last century, the flow of Dnieper waters to the lower Dnieper section takes place by regulated discharge of certain volumes of them through the dam of the Kakhovska HEPS [9, 20].

The mode of water inflow is a very important factor in the existence of the water ecosystem not only in lower Dnieper section, but also in the entire Dnieper-Buh mouth region [5], since it depends on the inflow of fresh water to all elements of the hydrographic network of the region with a total area1440 km² [6, 7, 10, 11].

Since the beginning of the full-scale invasion of Russian troops on the territory of Ukraine, the Kakhovska HEPS was one of the first objects of state infrastructure that came under the control of the aggressor country. If in the first months of the temporary occupation of the hydroelectric station, the usual regime of water inflow to lower Dnieper section was mostly not disturbed, then from the beginning of 2023, due to hostilities in the Kherson region, a significant hole was formed in the body of the HEPS dam (Fig. 1).

As a result of this regulation, the inflow of Dnieper waters to the mouth of the river was completely impossible. At the present time, this has already led to a number of negative ecological and socio-economic consequences in the study region, and in the near future we can predict an even greater deterioration of the state of aquatic ecosystems and their biological diversity, which has been formed here for centuries.

Research results and their discussion. The main negative situation caused by the hole in the body of the Kakhovska HEPS dam was a sharp drop in the water level in the Kakhovka Reservoir (Fig. 2) to historical minimum values since its foundation and, subsequently, in the lower Dnieper section.

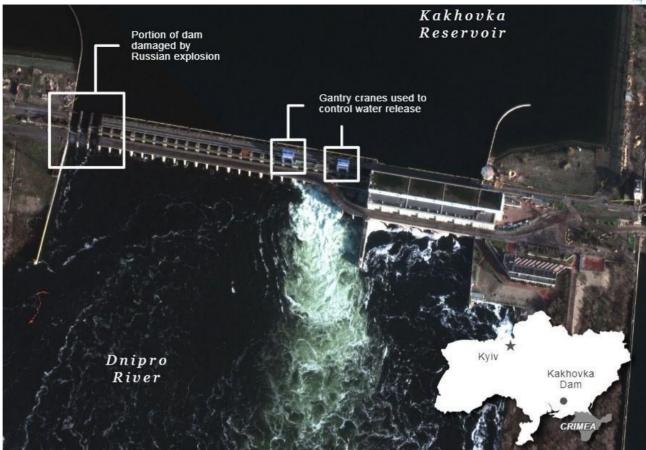


Figure 1 – Satellite image from Jan. 2, 2023. ©2023 Maxar Technologies. Credit: Connie Hanzhang Jin/NPR [18]

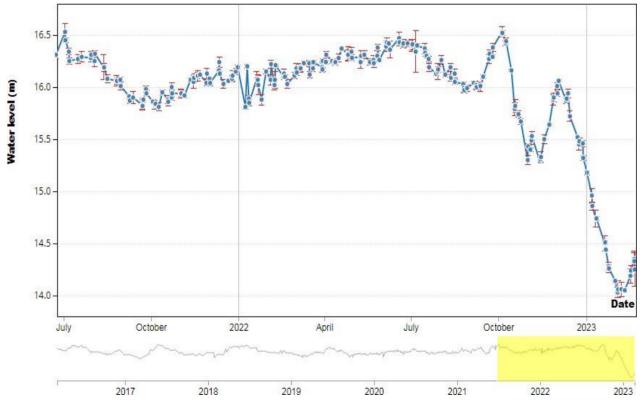


Figure 2 – The course of the water level in the Kakhovka Reservoir from July 2022 to February 2023 [17]

Thus, in the Kakhovka Reservoir in January-February, the water level was lower than the seasonal long-term values by 2.2-2.8 m, in the lower Dnieper section the water level was lower than the normal values by 1.6-1.8 m. As a result of this in the reservoir, significant areas of silty soils accumulated here since the 1950 year were exposed (Fig. 3), floodplains and watercourses below the Dnieper were almost completely dewatered (Fig. 4, 5).

Figure 3 – A fragment of the exposed coastline of the Kakhovka Reservoir with garbage and remains of aquatic plants [18]

Figure 4 – Shallowed part of a typical floodplain below the lower Dnieper section (February 2023) [8]

Figure 5 – Dead mollusk *Sphaerium sp.* and roots of aquatic plants *Nuphar lutea* on the bare coast of one of the typical reservoirs of the lower Dnieper section (February 2023) [8]

According to the results of our observations, low levels of water in the water system below the lower Dnieper section remained for almost the entire last decade of January 2023. Then the lack of water in the water system was compensated by the inflow of salty (sea) water from the Dnieper-Buh estuary. At the beginning of February, the water level rose again to average values, but not due to the restoration of the inflow of fresh water from the Kakhovka Reservoir, but due to the inflow of sea water from the coastal areas of the Black Sea.

From the presented material, it can be concluded that the main negative environmental consequences caused by the violation of the regulated water inflow to the lower Dnieper section, which should be expected in the near future in this region, will mainly be associated with two key factors for this situation:

- arrival of a significant amount of allochthonous biogenic and organic substances containing the products of decomposition of long-term silt deposits from the Kakhovka Reservoir in the spring-summer period of 2023;
- a sharp increase in water salinity in the freshwater hydroecosystems of the estuary of the Dnieper and the Dnieper-Buh estuary.

In the coming months, the damage to aquatic ecosystems will occur mainly due to the contamination of the waters of the listed water areas with allochthonous biogenic and organic substances formed in the silted, dehydrated areas of the Kakhovka Reservoir. According to our calculations, at the present time, more than 90 km² of the exposed bed of the reservoir remains dehydrated, on which, under the influence of sunlight and positive air temperatures, the remains of aquatic animals, plants, organic substances of silt decompose.

The spring water level rise in the Lower Dnieper water system, which can be expected already in the coming months, will cause significant volumes of water contaminated with bacteria and disease-causing microorganisms to enter the estuary of the river, which have managed to multiply on the bare silty substrate of the higher reaches of the river. Such processes will not only further worsen the ecological situation of the Dnieper-Buh mouth region, but will also lead to a violation of the sanitary-epidemiological situation in reservoirs, watercourses below the Dnieper and the Dnieper-Buh estuary.

The second largest consequence for the lower Dnieper section is the inflow of salty (sea) water from the Dnieper-Buh estuary caused by the shortage of fresh Dnieper waters. According to our observations, the water salinity values in the Dnieper near the city of Kherson at the beginning of February in the surface layer varied between 1.2-1.8% (with normal seasonal values of 0.2-0.4% [3, 15]).

Our numerous studies demonstrate that the flora and fauna of the region, especially freshwater, reacts very sensitively to changes in the abiotic factors of the water environment [1, 2, 10, 12, 13, 16, 19, 20]. Species listed in the Red Book of Ukraine and other regional and international nature protection lists are particularly vulnerable in this sense [4, 7, 14]. Under such conditions, we can expect the disappearance of most aboriginal freshwater species of hydrobionts in the next six months. In the future, natural disturbances of trophic relationships in the water ecosystem below will lead to the inevitable death of a significant number of representatives of aboriginal and red book species of freshwater flora and fauna.

Changes in the hydrological and hydrochemical conditions of the existence of hydrobionts of the Lower Dnieper, which we are currently observing, in the absence of the implementation of appropriate specially developed scientifically based methods of regulating the state of aquatic ecosystems, will inevitably lead to the total degradation of the unique aquatic ecosystem below the lower Dnieper section. First of all, the general degradation of the water ecosystem in the coming years will inevitably be reflected in the total overgrowth of the Dnieper floodplain with higher aquatic vegetation, the increase in the duration and frequency of water blooms, the increase in the number of fish and other hydrobionts, the shallowing of reservoirs and watercourses with their subsequent siltation and complete drying out.

In view of the above materials, we have identified four key directions for the development of urgent practical methods aimed at avoiding the deepening of negative environmental consequences caused by the violation of the water regime on the Lower Dnieper:

- 1) cleaning of exposed areas of the bed of the Kakhovka Reservoir from organically saturated silt deposits and the remains of aquatic plants and animals;
- 2) development and implementation of an ecologically sound system of water releases through the Dniprovska and Kakhovska HEPS dams, which will take into account both the volume of water inflow and the amplitude of water level fluctuations in the water body;
- 3) repair of damage to the body of the Kakhovska HEPS dam caused by the actions of russian troops;
 - 4) development and implementation of methods for regulating the state of water

ecosystems in the affected area by regulating the hydrological and hydrochemical regime of local water bodies.

Conclusions. In the article, a preliminary assessment of the damage caused to nature was carried out due to the violation of the regulated regime of the flow of river waters to the lower reaches of the lower Dnieper section. Based on the analysis of changes in hydrological and hydrochemical regimes, a forecast of possible negative environmental consequences in the Dnieper-Buh mouth region that can be expected in the coming years has been made.

Among the main predictors that can cause a significant deterioration of the ecological situation in the region, we have highlighted the following: a decrease in the inflow of Dnieper waters, a violation of their regulated inflow regime through the Kakhovska HEPS dam, a significant shallowing of the bed of the Kakhovka Reservoir and floodplains below the lower Dnieper section, the inflow of salt water into the river's freshwater areas, increasing the amount of organic and biogenic substances in the water ecosystem of the river.

As suggestions for avoiding the total degradation of the water ecosystem of the Dnieper-Buh mouth region, it is proposed to develop and implement a complex of practical scientifically based methods of active influence on the water ecosystem of the region, which should be specially developed for the situation that has developed at the present time.

References

- 1. Korzhov Ye. I., Honcharova O. V., Kutishchev P. S. (2020). Analiz mozhlyvykh ekolohichnykh ta sotsialno-ekonomichnykh naslidkiv skorochennia prisnovodnoho stoku do Dniprovsko-Buzkoi hyrlovoi oblasti. *Ternopilski biolohichni chytannia Ternopil Bioscience 2020*. Materialy Vseukrainskoi naukovo-praktychnoi konferentsii, prysviachenoi 80-richchiu khimiko-biolohichnoho fakultetu Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni Volodymyra Hnatiuka, Ternopil: Vektor, *S.*144-147 [in Ukrainian].
- 2. Korzhov Ye. I., Kutishchev P. S., Honcharova O. V. (2020). Ekolohichni aspekty zbilshennia solonosti vod Dniprovsko-Buzkoho lymanu na suchasnomu etapi isnuvannia yoho vodnoi ekosystemy. *Ekolohichna bezpeka derzhavy:* tezy dopovidei XIII Vseukrainskoi naukovo-praktychnoi konferentsii molodykh uchenykh i studentiv, Kyiv, 23 kvitnia 2020, Natsionalnyi aviatsiinyi universytet / redkol. O. I. Zaporozhets ta in. K.: NAU, S. 80-81 [in Ukrainian].
- 3. Korzhov Ye. I., Kucheriava A. M. (2018). Osoblyvosti vplyvu zovnishnoho vodoobminu na hidrokhimichnyi rezhym zaplavnykh vodoim ponyzzia Dnipra. *Hydrobiolohichnyi zhurnal*. 54, №4, S.112-120 [in Ukrainian].
- 4. Korzhov Ye. I. (2021). Otsinka vydovoho skladu rakopodibnykh Dniprovsko-Buzkoho lymanu, zanesenykh do Chervonoi knyhy Ukrainy, ta yoho mozhlyvykh zmin. *Praktychni aspekty zberezhennia bioriznomanittia pivdennoho stepovoho rehionu: zbirnyk naukovykh prats naukovo-praktychnoho seminaru (Biosfernyi zapovidnyk «Askaniia-Nova»*, smt. Askaniia-Nova, 26–27 travnia 2021 r.). Kherson: OLDI-PLIUS, S. 103-107 [in Ukrainian].
 - 5. Korzhov Ye.I., Pulenko Yu. V. (2021). Terminolohichni osoblyvosti

heohrafichnykh nazv elementiv hidrohrafichnoi merezhi nyzhnoi techii richok. *Topical issues of modern science, society and education*: proc. of the 1st Int. scientific and practical conf. (Kharkiv, 8-10 august 2021), P. 325-331 [in Ukrainian].

- 6. Korzhov Ye. I., Honcharova O. V. (2020). Formuvannia rezhymu solonosti vod Dniprovsko-Buzkoi hyrlovoi oblasti pid vplyvom klimatychnykh zmin u suchasnyi period. *Actual problems of natural sciences: modern scientific discussions:* Collective monograph. Riga: Izdevniecība «Baltija Publishing», S. 315–330 [in Ukrainian].
- 7. Korzhov Ye. I., Dzerkal V. M., Bilyk H. V., Ponomarova A. A. (2019). Shliakhy zberezhennia chervonoknyzhnykh vydiv flory ta fauny vodnykh ekosystem NPP «Nyzhnodniprovskyi». «Bioriznomanittia stepovoi zony Ukrainy: vyvchennia, zberezhennia, vidtvorennia» (z nahody 10-richchia stvorennia natsionalnoho pryrodnoho parku «Meotyda»). Seriia «Conservation Biology in Ukraine». Vyp. 13. Sloviansk: Vydavnytstvo «Drukarskyi dvir», S. 79-85 [in Ukrainian].
- 8. Na Khersonshchyni v dniprovskykh plavniakh riven vody vpav maizhe na dva metry. *Suspilne Kherson*. Retrieved from URL: https://suspilne.media/365510-na-hersonsini-v-dniprovskih-plavnah-riven-vodi-vpav-majze-na-dva-metri-cim-ce-zagrozue/ (date of application 25.02.2023) [in Ukrainian].
- 9. Timchenko V. M., Karpova H. O., Huliaeva O. O. ta in. (2015). Prohnoz vplyvu mozhlyvoi rekonstruktsii Kakhovskoi HES na ekosystemy ponyzzia Dnipra ta Kakhovskoho vodoskhovyshcha. *Nauk. zap. Ternop. nats. ped. un-tu. Seriia «Biolohiia»*. № 3-4 (64). S. 665 668 [in Ukrainian].
- 10. Timchenko V. M., Korzhov Ye. I. (2011). Suchasni popusky Kakhovskoi HES yak faktor pohirshennia stanu ekosystemy Nyzhnoho Dnipra. *Hidrolohiia, hidrokhimiia, hidroekolohiia:* materialy 5-oi vseukr. nauk. konf. (Chernivtsi, 22-24 veresnia 2011 r.). S.257-259 [in Ukrainian].
- 11. Korzhov Ye. (2020). Analysis of possible negative environmental and socio-economic consequences of freshwater drain reduction to the Dnieper-Bug mouth region. *Perspectives of world science and education*. Abstracts of the 8th International scientific and practical conference. CPN Publishing Group. Osaka, Japan, P. 84-90 [in English].
- 12. Korzhov Ye. I., Yefremenko N. D., Miroshnichenko K. V. (2022). Assessment of the main signs of decline in the state of water ecosystems of the Dnieper mouth section. *Science and innovation of modern world*. Proceedings of the 2nd International scientific and practical conference. Cognum Publishing House. London, United Kingdom, P. 49 54 [in English].
- 13. Korzhov Ye. I., Kutishchev P. S., Honcharova O. V. (2020). Influence of water balance elements change on the salinity regime of the Dnieper-Bug estuary. *Innovative development of science and education*. Abstracts of the 3rd International scientific and practical conference. ISGT Publishing House. Athens, Greece, P. 225-231 [in English].
- 14. Korzhov Ye. I. (2021). Overview of possible changes in the species composition of Dnieper-Buh estuary crustacean listed in the Red Book of Ukraine. *Modern scientific research: achievements, innovations and development prospects.* Proceedings of the 2nd International scientific and practical conference. MDPC

Publishing. Berlin, Germany, P. 30-35 [in English].

- 15. Korzhov Ye. I., Kucheriava A. M. (2018). Peculiarities of External Water Exchange Impact on Hydrochemical Regime of the Floodland Water Bodies of the Lower Dnieper Section. *Hydrobiological Journal Begell House (United States)*. Vol. 54, Issue 6, P. 104-113 [in English].
- 16. Kutishchev P. S., Heina K. M., Honcharova O. V., Korzhov Ye. I. (2021). Zooplankton Spatial Distribution in the Dnieper-Bug Estuary. *Hydrobiological Journal Begell House (United States)*. Vol. 57, Issue 6, P. 17 30 [in English].
- 17. Lake Kakhovka. *Theia Scientific Expertise Centres (SEC)*. Retrieved from URL: https://hydroweb.theia-land.fr/?lang=en& (date of application 25.02.2023) [in English].
- 18. Russia is draining a massive Ukrainian reservoir, endangering a nuclear plant. *NPR*. Retrieved from URL: https://www.npr.org/2023/02/10/1155761686/ russia-is-draining-a-massive-ukrainian-reservoir-endangering-a-nuclear-plant (date of application 25.02.2023) [in English].
- 19. Shevchenko I. V., Korzhov Ye. I., Kutishchev P. S., Honcharova O. V., Shevchenko V. Yu. (2020). Effect of Abiotic Factors upon Morphological Variability of Fleuria lacustris Larvae (Diptera, Chironomidae). *Hydrobiological Journal Begell House (United States)*. Vol. 56, Issue 5, P. 15-22 [in English].
- 20. Timchenko V. M., Korzhov Ye. I., Guliayeva O. A., Batog S. V. (2015). Dynamics of Environmentally Significant Elements of Hydrological Regime of the Lower Dnieper Section. *Hydrobiological Journal Begell House (United States)*. Vol. 51, Issue 6, P. 75-83 [in English].

Article sent: 09.03.2023. © Korzhov Ye. I., Honcharova O. V.

CONTENTS

Medicine and health care

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-010

- 3

CHANGES IN FIBRINO- AND PROTEOLYTIC ACTIVITY IN RATS KIDNEYS UNDER THE INFLUENCE OF EXOGENOUS GLUTATHIONE ON THE BACKGROUND OF

RHABDOMYOLYSIS-INDUCED ACUTE KIDNEY INJURY

Drachuk V., Zamorskii I., Kopchuk T., Shchudrova T., Goroshko O., Dikal M.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-040

9

EFFECTIVENESS OF THE USE OF THE VETERINARY DRUG TRIOSAN (CREAM) IN THE COMPLEX THERAPY OF DOGS FOR ATOPIC DERMATITIS

Matsenko O., Maslak Y., Kusch L., Shchepetilnikov Y., Ilina O.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-055

1.9

MARKETING ANALYSIS OF ADEMETHIONINE IN THE PHARMACEUTICAL MARKET OF UKRAINE

Drachuk V., Zamorskii I., Kopchuk T., Shchudrova T., Goroshko O., Dikal M.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-058

25

DIFFUSION-WEIGHTED IMAGES AND PET/CT IN THE DIAGNOSIS OF ONCOLOGICAL PATHOLOGY OF THE ABDOMINAL CAVITY

Sokolov V., Sytnykova E., Dorofeeva T., Tsvigovskiy V. Korsun A., Slyusarenko A., Dius E., Dolgushyn O.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-072

39

FEATURES OF ALLERGIC DISEASES IN PREGNANT WOMEN

Kaspruk N.M., Batranovska S.O., Melnychuk S.P.

Biology and ecology

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-021

45

ASSESSMENT OF THE KEY FACTORS OF THE EXPECTED DETERIORATION OF THE ECOLOGICAL CONDITION OF THE LOWER DNIEPER IN THE MODERN PERIOD DUE TO THE VIOLATION OF THE REGULATED RIVER WATERS FLOW REGIME

Korzhov Ye.I., Honcharova O.V.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-036

53

RISK-ORIENTED CONTROL OF FISH PRESERVES

Kravchenko I.M., Bohatko N.M., Bartkiv L.H., Tymoshenko O.V., Korzhov Y. O., Bohatko A.F., Hut T.P., Kurmash A.M., Dovbysh V.V.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-068

SOME FEATURES OF THE AGROCHEMICAL COMPOSITION OF THE SOILS OF THE WESTERN POLISSYA OF UKRAINE Lysytsya A.

Agriculture, forestry, fishery and water management

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-001

66

FEATURES THE STORAGE OF ROOT FRUITS OF SOME VEGETABLE CROPS

Derebon I. Yu., Rudenko Yu.F.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-005

72

SELECTION OF VARIETIES AND HYBRIDS OF TABLE BEET FOR THE CONDITIONS OF THE LEFT BANK FOREST STEPPE OF UKRAINE Basiuk S.M.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-039

78

TOPINAMBUR AS AN ENERGY CROP FOR THE PRODUCTION OF ALTERNATIVE ENERGY SOURCES

Iesipov O. V., Hryn Y. L.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-067

84

PECULIARITIES OF GROWTH AND DEVELOPMENT OF CHICORY ROOT SEED PLANTS

Tkach O.V., Ovcharuk O.V., Ovcharuk V.I., Padalko T.O.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-069

91

FEATURES OF PARSLEY GROWING IN THE CONDITIONS OF THE LEFT BANK FOREST STEPPE OF UKRAINE

Karakutsia K.S.

Economy and trade

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-019

95

MODELING OF THE ECONOMIC GROWTH OF UKRAINE

Averkyna M.F., Andrushchyshyna H.M.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-029

103

ASSESSMENT OF THE FINANCIAL POTENTIAL AS PART OF THE POTENTIAL OF THE ENTERPRISE

Akimova O., Petchenko M.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-042

111

THE IMPACT OF EXCHANGE RATE FLUCTUATIONS ON THE FINANCIAL PERFORMANCE OF AN ENTERPRISE ENGAGED IN FOREIGN ECONOMIC ACTIVITY

Savchuk K.M., Ihnatenko T.V.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-050

CROWDFUNDING AS A BUSINESS PROJECT DEVELOPMENT TOOL

Redko N. A., Amelina N.K.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-057

121

SMART INDUSTRY: INNOVATIONS AND CHALLENGES ON THE PATH TO EFFICIENT PRODUCTION

Belous-Sergieieva S.O.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-079

132

COMPONENTS OF SUSTAINABLE DEVELOPMENT IN THE CONTEXT OF MODERN CHALLENGES

Mandych O., Babko N., Nakisko O. Birchenko N., Girzheva O.

Management and marketing

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-017

IMPLEMENTATION OF THE CONCEPT OF SOCIAL - ETHICAL MARKETING IN THE ACTIVITIES OF TOURIST ENTERPRISES Mushtai V.A., Makarova V.V.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-023

146

COOPETITION AS A WAY OF IMPROVING STRATEGIC MANAGEMENT Ilnytskyi V.S.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-026

151

CRM SYSTEMS AS A COMPONENT OF INTERNET MARKETING **ENTERPRISES**

Nikolaenko I.V., Navrotskiy N.A.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-027

157

KEY STAKEHOLDERS OF EDUCATIONAL PROGRAMS: IDENTIFICATION OF INTERESTS AND INTERACTION STRATEGIES Halushka Z.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-033

165

FEATURES OF MANAGEMENT AND ADJUSTMENT OF COMMUNICATIONS IN VIRTUAL TEAMS Hrynchak N.A., Motuzka O.M.

https://www.sworldjournal.com/index.php/swj/article/view/swj18-02-049

173

www.sworldjournal.com

MANAGEMENT DECISIONS OF THE HEAD OF THE ENTERPRISE IN THE TERMS OF INTERACTION OF MARKETING MANAGEMENT PERSONNEL AND ITS PSYCHOLOGY

Moroz. L.I.

Scientific publication

International periodic scientific journal

ScientificWorldJournal

Issue №18
Part 2
March 2023

Indexed in INDEXCOPERNICUS high impact factor (ICV: 89.14)

Articles published in the author's edition

Academy of Economics named after D.A. Tsenov Bulgaria jointly with SWorld

Signed: March 30, 2023

e-mail: editor@sworldjournal.com
site: www.sworldjournal.com

www.sworldjournal.com

