

Międzynarodowe czasopismo naukowe

Economics
Medical sciences
Technical science
Biological sciences
Agricultural sciences
Physical education and sport
№17(69) 2020
Część 2

ISSN 2520-6990

ISSN 2520-2480

Colloquium-journal №17 (69), 2020

Część 2

(Warszawa, Polska)

Redaktor naczelny - **Paweł Nowak Ewa Kowalczyk**

Rada naukowa

- Dorota Dobija profesor i rachunkowości i zarządzania na uniwersytecie Koźmińskiego
- **Jemielniak Dariusz** profesor dyrektor centrum naukowo-badawczego w zakresie organizacji i miejsc pracy, kierownik katedry zarządzania Międzynarodowego w Ku.
- Mateusz Jabłoński politechnika Krakowska im. Tadeusza Kościuszki.
- Henryka Danuta Stryczewska profesor, dziekan wydziału elektrotechniki i informatyki Politechniki Lubelskiej.
- Bulakh Iryna Valerievna profesor nadzwyczajny w katedrze projektowania środowiska architektonicznego, Kijowski narodowy Uniwersytet budownictwa i architektury.
- Leontiev Rudolf Georgievich doktor nauk ekonomicznych, profesor wyższej komisji atestacyjnej, główny naukowiec federalnego centrum badawczego chabarowska, dalekowschodni oddział rosyjskiej akademii nauk
- Serebrennikova Anna Valerievna doktor prawa, profesor wydziału prawa karnego i kryminologii uniwersytetu Moskiewskiego M.V. Lomonosova, Rosja
- Skopa Vitaliy Aleksandrovich doktor nauk historycznych, kierownik katedry filozofii i kulturoznawstwa
- Pogrebnaya Yana Vsevolodovna doktor filologii, profesor nadzwyczajny, stawropolski państwowy Instytut pedagogiczny
- Fanil Timeryanowicz Kuzbekov kandydat nauk historycznych, doktor nauk filologicznych. profesor, wydział Dziennikarstwa, Bashgosuniversitet
- Kanivets Alexander Vasilievich kandydat nauk technicznych, docent wydziału dyscypliny inżynierii ogólnej wydziału inżynierii i technologii państwowej akademii rolniczej w Połtawie
- Yavorska-Vitkovska Monika doktor edukacji , szkoła Kuyavsky-Pomorsk w bidgoszczu, dziekan nauk o filozofii i biologii; doktor edukacji, profesor
- Chernyak Lev Pavlovich doktor nauk technicznych, profesor, katedra technologii chemicznej materiałów kompozytowych narodowy uniwersytet techniczny ukrainy "Politechnika w Kijowie"
- Vorona-Slivinskaya Lyubov Grigoryevna doktor nauk ekonomicznych, profesor, St. Petersburg University of Management Technologia i ekonomia
- Voskresenskaya Elena Vladimirovna doktor prawa, kierownik Katedry Prawa Cywilnego i Ochrony Własności Intelektualnej w dziedzinie techniki, Politechnika im. Piotra Wielkiego w Sankt Petersburgu
- Tengiz Magradze doktor filozofii w dziedzinie energetyki i elektrotechniki, Georgian Technical University, Tbilisi, Gruzja
- Usta-Azizova Dilnoza Ahrarovna kandydat nauk pedagogicznych, profesor nadzwyczajny, Tashkent Pediatric Medical Institute, Uzbekistan

«Colloquium-journal»

Wydrukowano w «Chocimska 24, 00-001 Warszawa, Poland»

E-mail: info@colloquium-journal.org

http://www.colloquium-journal.org/

CONTENTS

BIOLOGICAL SCIENCES

Алтамирова Л.В., Даричева А.В., Исмагулова К.С.,
Малич И.В., Тумасян Н.А., Шестеренко Д.С. ВЛИЯНИЕ УРОВНЯ ТРЕВОЖНОСТИ НА КАЧЕСТВО СНА СРЕДИ СТУДЕНТОВ ВОЛГОГРАДСКИХ ВУЗОВ4
Altamirova L.V., Daricheva A.V., Ismagulova K.S.,
Malich I.V., Tumasyan N.A., Shesterenko D.S.
INFLUENCE OF ANXIETY ON SLEEP QUALITY AMONG THE STUDENTS OF VOLGOGRAD UNIVERSITIES4
Белова М.К., Миргородский Н.А.
ВЛИЯНИЕ ПОЛИЭТИЛЕНТЕРЕФТАЛАТА (РЕТ) НА ЧЕЛОВЕКА И ОКРУЖАЮЩУЮ СРЕДУ
Belova M. K., Mirgorodsky N.A.
IMPACT OF POLYETHYLENE TEREPHTHALATE (PET) ON HUMANS AND THE ENVIRONMENT8
MEDICAL SCIENCES
Коновалов Н.Ф., Шнайдер С.А.
СОСТОЯНИЕ МЕСТНОГО ИММУНИТЕТА ПОЛОСТИ РТА ДЕТЕЙ РАННЕГО ШКОЛЬНОГО ВОЗРАСТА,
СТРАДАЮЩИХ ЭПИЛЕПСИЕЙ
Konovalov N.F., Schneider S.A.
THE STATE OF LOCAL IMMUNITY OF THE ORAL CAVITY OF CHILDREN
OF EARLY SCHOOL AGE SUFFERING FROM EPILEPSY11
Земскова С.Е., Лузина Е.А., Футанова М.Г., Кошманёв М.С.
ФОРМИРОВАНИЕ ПИЩЕВОГО ПОВЕДЕНИЯ ШКОЛЬНИКОВ. РАССТАВЛЯЕМ АКЦЕНТЫ14
Zemskova Sv.E., Luzina E.A., Futanova M.G., Koshmanyov M.S.
FORMATION OF SCHOOL CHILDREN'S EATING BEHAVIOR. SETTING THE EMPHASIS14
Терешкович А.В.
ЭТАПНОЕ ХИРУРГИЧЕСКОЕ ЛЕЧЕНИЕ ПАЦИЕНТОВ С ГНОЙНО-СЕПТИЧЕСКИМИ ОСЛОЖНЕНИЯМИ МУЛЬТИРЕЗИСТЕНТНОГО ТУБЕРКУЛЕЗА ЛЕГКИХ
Теreshkovych O.V.
STAGE SURGICAL TREATMENT OF PATIENTS WITH PURULENT-SEPTIC COMPLICATIONS
OF MULTIDRUG-RESISTANT LUNG TUBERCULOSIS
01 1102 1151 100 1125 1111 1111 1111 111
AGRICULTURAL SCIENCES
Alegor A.A.
ХЛОПКОВОДСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ: ИСТОРИЯ, СОСТОЯНИЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ21 Dedov A.A.
COTTON GROWING IN THE RUSSIAN FEDERATION: HISTORY, STATE AND PROSPECTS OF DEVELOPMENT21
Kumuran T.U. Mammun O.A. Osusaa O.A.
Кирилюк Т.Н., Мотрич С.А., Огнева О.А. ПОЛЬЗА ТВОРОГА ВО ВРЕМЯ БЕРЕМЕННОСТИ24
Kirilyuk Tatyana N., Motrich S.A., Ogneva O.A.
THE USE OF CURROW DURING PREGNANCY24
Maykhan H., Troshin L.P., Kravchenko R.V., Hilmand M., Wafa S.
GARDENING OF AFGHANISTAN25
Воличенко Ю.Н., Цуркан Л.В., Шерман И.М.
ФИЗИОЛОГО-БИОХИМИЧЕСКИЕ ПОКАЗАТЕЛИ ГИБРИДА БЕЛОГО
И ПЕСТРОГО ТОЛСТОЛОБИКОВ В ПЕРИОД ЗИМНЕГО СОДЕРЖАНИЯ29
Volichenko Yu.N., Turcan L.V., Sherman I.M.
PHYSIOLOGICAL AND BIOCHEMICAL INDICATORS OF HYBRID OF WHITE
AND MIRRID HARBOR IN THE PERIOD OF WINTER CONTENT

УДК 639.3:597.551.2:616.15(477.7)

Воличенко Юрий Николаевич

кандидат сельскохозяйственных наук

Цуркан Людмила Витальевна, аспірант

аспірант

Шерман Исаак Михайлович

доктор сельскохозяйственных наук, професор

Херсонский государственный аграрный университет, г. Херсон

DOI: 10.24411/2520-6990-2020-11999

ФИЗИОЛОГО-БИОХИМИЧЕСКИЕ ПОКАЗАТЕЛИ ГИБРИДА БЕЛОГО И ПЕСТРОГО ТОЛСТОЛОБИКОВ В ПЕРИОД ЗИМНЕГО СОДЕРЖАНИЯ

Volichenko Yuri Nikolaevich,
candidate of agricultural sciences
Turcan Lyudmila Vitalevna,
graduate student
Sherman Isaac Mikhailovich
Doctor of Agricultural Sciences, Professor
Kherson state
Agricultural University, Kherson

PHYSIOLOGICAL AND BIOCHEMICAL INDICATORS OF HYBRID OF WHITE AND MIRRID HARBOR IN THE PERIOD OF WINTER CONTENT

Аннотация.

В статье рассмотрены гематологические показатели крови сеголеток гибрида белого и пестрого толстолобиков выращеных по пастбищной технологии в условиях юга Украины в период зимнего содержания и установлены определенные корреляционные зависимости между основными рыбохозяйственными признаками исследовательской группы сеголеток. Впервые осуществлен анализ гематологических показателей крови сеголеток и годовиков гибрида белого и пестрого толстолобиков выращенного по пастбищной технологии.

Abstract.

The article discusses the hematological parameters of blood of the young silver carp grown on pasture technology in the conditions of southern Ukraine during the winter period and established certain correlation between the main fisheries of the research group of yearlings. For the first time, an analysis was made of the hematological parameters of blood of yearlings and broilers of the white silver carp grown by grazing technology.

Ключевые слова: средняя масса, гематологические показатели, выростные пруды, корреляция, регрессионные зависимости.

Keywords: average weight, hematological parameters, outgrowth ponds, correlation, regression dependencies.

Кровь является одной из наиболее лабильных тканей, которая быстро реагируюет на действие различных факторов, обеспечивает динамическое равновесие между организмом и окружающей средой. Пойкилотермность и определенная примитивность организации рыб по сравнению с теплокровными животными определяет более широкую норму их реакции. Условия обитания рыб накладывают отпечаток на морфологический состав и количественные показатели красной и белой крови. Исходя из этого, картина крови меняется в зависимости от температуры, гидрохимического режима, состава и количества естественных кормов, плотности посадки, возраста и общего физиологического состояния [1].

Основными белками плазмы крови и метаболитами биохимических реакций белкового обмена организма рыб является альбумины, креатинин, триглицериды и глюкоза. Они играют важную роль в регуляции осмотического давления крови, являются источником аминокислот, обеспечивают синтез белков других тканей, одновременно берут непосредственное участие в жировом обмене [2].

Содержание белков сыворотки крови и метаболитов меняется в зависимости от сезона и особенностей технологического процесса. Руководствуясь вышеизложенным представляется целесообразным проводить систематический мониторинг физиологического состояния, анализируя полученные результаты в динамике, устанавливая зависимость между рыбоводно-биологическим показателям и факторами среды, что позволит повысить уровень прогнозирования результатов выращивания и зимовки гибрида белого и пестрого толстолобиков.

В специальной литературе, ориентированной на выращивание рыбопосадочного материала карповых по пастбищной технологии, практически отсутствуют данные о гематологических показателях,

крайне важных для оценки сеголеток карповых. Особое значение определенные параметры крови приобретают для рыбопосадочного материала карповых, который используется для ежегодного вселения в естественные и трансформированные акватории с целью получения товарной продукции за счет естественного кормового ресурса, путем его трансформации в кормовую базу культивуемих видов рыб.

В связи с этим весьма важным является ликвидация существующего пробела, учитывая почвенно-климатические особенности региона на фоне общей тенденции глобального повышения температуры.

Наряду с этим картина крови является объективным и високолабильним показателем физиологического состояния особей и дает представление относительно готовности рыбопосадочного материала перейти от периода нагула, что имело место в выростных прудах, к голодному обмену в процессе зимовки, что важно для их адаптации.

Исходя из этого в процессе исследований были изучены гематологические показатели крови сеголеток гибрида белого и пестрого толстолобиков, которые были выращены и находились на зимовке по пастбищной технологии в условиях юга Украины.

В качестве экспериментальной базы были использованы выростные пруды ГУ «Новокаховский рыбоводный завод частиковых» рыб где осуществляется искусственное воспроизводство и выращивание рыбопосадочного материала карповых для дальнейшего вселения в низовья Днепра.

В качестве экспериментального материала были использованы сеголетки и годовики гибрида белого и пестрого толстолобиков. Предметом исследований выступали морфо-биохимические показатели крови.

Сбор экспериментального материала проводился в осенне-весенний период в 2019 году и был использован для определения гематологических показателей. Отбор проб проводили в конце вегетационного сезона на фоне снижения температуры воды, достигшего 10°С. при облове прудов. В процессе облова прудов методом рендомизации отбирали по 10 экземпляров каждого вида, и использовали в лабораторных исследованиях в соответствии с их направлением.

Отбор проб крови проводили прижизненно с хвостовой вены, путем ампутации ствола хвостового плавника. Для получения стабилизированной крови, применяли 0,2% раствор гепарина с концентрацией 1000 м.од./мл. По существующим методикам определяли концентрацию гемоглобина (Нb), количество эритроцитов, лейкоцитов и лейкоцитарную формулу [3 - 10]. Для расчета лейкоцитарной формулы, форменные элементы дифференцировали по классификации Н.Т. Ивановой [7].

Биохимический анализ сыворотки крови проводили на биохимическом анализаторе Humalyzer 3000 (Германия) с помощью стандартных унифицированных наборов от Human GmbH (Германия).

Для установления возможных зависимостей между массой и определенными гематологическими показателями, учитывая видоспецифические особенности исследуемых особей, полученные материалы были подвергнуты вариационно-статистическому анализу по общепринятым методикам [11, 12] и обработаны с помощью статистического пакета STATISTICA 8.0.

Исходя из традиционной оценки качества рыбопосадочного материала по средней индивидуальной массе тела, нами была предпринята попытка оценить рыбопосадочный материал, связав массу тела с определенными гематологическими показателями.

Средняя масса гибрида белого и пестрого толстолобиков составила $45,4\pm12,92$ г. Анализ гематологических показателей рыб с контролируемыми параметрами показал высокую лабильность по многим показателям (табл. 1).

Из полученных гематологических показателей следует определенное наличие Ввидоспецифических особенностей. Высокое содержание гемоглобина было у сеголеток - 99,1 г/л, и годовиков - 63,6 г/л. Наряду с этим, показатель количества эритроцитов, был стабилен на уровне 2,1 млн/мкл, что соответствует нормальному физиологическому состоянию [1].

Максимальное количество лейкоцитов наблюдалась у сеголеток - 36,1 тыс/мкл, минимальное - у годовиков на уровне 12,4 тыс/мкл, что соответствует нормальному физиологическому состоянию [1].

Таблица 1

Показатели				
Возраст	Сеголетки	Годовики		
Гемоглобин, г/л	$99,1 \pm 1,64$	$63,6 \pm 5,41$		
Эритроциты, млн/мкл	$2,1 \pm 0,13$	$2,1 \pm 0,09$		
Лейкоциты тыс/мкл	$36,1 \pm 4,46$	$12,4 \pm 0,77$		
Бласты, %	0.6 ± 0.13	$0,1 \pm 0,01$		
Нейтрофилы, %	$6,4 \pm 0,86$	$35,9 \pm 0,24$		
Эозинофилы, %	$2,4 \pm 0,45$	$1,4 \pm 0,14$		
Базофилы, %	-	1		
Пенистые клетки, %	-	1		
Моноциты, %	0.5 ± 0.07	$1,2 \pm 0,19$		
Лимфоциты, %	89.9 ± 1.24	$61,3 \pm 0,57$		
Общий белок, г/л	$26,6 \pm 4,74$	$27,3 \pm 5,82$		
Альбумины, г/л	$3,0 \pm 1,77$	$3,2 \pm 2,00$		
Креатинин, мг/дл	0.6 ± 0.17	0.6 ± 0.17		
Кальций, мг/дл	$8,6 \pm 1,30$	$8,4 \pm 1,54$		
Фосфор, мг/дл	$20,4 \pm 2,06$	$24,0 \pm 7,53$		
Триглицериды, мг/дл	$186,8 \pm 78,17$	$193,4 \pm 83,73$		
Холистерол, мг/дл	$108,5 \pm 35,4$	$109,5 \pm 38,39$		
Глюкоза, мг/дл	$54,0 \pm 14,84$	$59,4 \pm 14,37$		

Анализируя лейкоцитарную формулу сеголеток и годовиков, представленных группой гранулоцитов и агранулоцитив, установили существенные особенности и качественную разницу, а именно: отсутствие базофилов и пенистых клеток, по нашему мнению, связано с принципиальной разницей в характере питания и как следствие специфическим пищеварением и усвоением пищи.

Важное значение, характеризующее физиологическое состояние рыбы, имеет содержание сывороточных белков и метаболитов в крови. Известно, что содержание общего белка и глюкозы в сыворотке крови свидетельствует об уровне белкового и углеводного обмена, а холистерол является одним из показателей жирового обмена.

В ходе исследований выявлено, что основные гематологические показатели сыворотки находились в пределах нормы [2]. Максимальное значение

по содержанию триглицеридов имели годовики 193,4 мг/дл, у сеголеток на уровне 186,8 мг/дл соответственно, при норме 70 до 200 мг/дл. По содержанию холистерола, соответственно от 109,5 мг/дл до 108,5 мг/дл. Содержание глюкозы в сыворотке крови составляло от - 59,4 мг/дл, до - 54,0 мг/дл.

Изучаемые параметры крови имеют достаточно индивидуальный характер, поэтому для установления зависимости рассматриваемых признаков вычисляли коэффициент корреляции относительно массы тела (табл. 2.).

Корреляционный анализ показал достоверные положительные зависимости показателей крови от средней массы рыб по количеству гемоглобина, эритроцитов и лимфоцитов во всех исследуемых группах (р <0,05). Также установлены достоверные зависимости в сыворотке крови метаболитов фосфора, триглицеридов (р <0,01).

Таблица 2

Коэфициенты корреляции между показателями крови и середней массой. $\Sigma(x_i - v_i)$

коэфициенты корреляции между показателями крови и середнеи массои, $\mathcal{L}(x_i - y_i)$				
Показатель	Сеголетки	Годовики		
Гемоглобин, г/л	+0,7858	+0,9919		
Эритроциты, млн/мкл	+0,7843	+0,9849		
Лейкоциты тыс/мкл	-0,7928	-0,9396		
Бласты, %	+0,7842	-0,8703		
Нейтрофилы, %	-0,7741	-0,9557		
Эозинофилы + псевдоеозинофилы, %	-0,7756	-0,9914		
Базофилы + псевдобазофилы, %	-	=		
Пенистые клетки, %	-	-		
Моноциты, %	-0,7848	-0,9972		
Лимфоциты, %	+0,7821	+0,9799		
Общий белок, г/л	+0,6353	+0,5373		
Альбумины, г/л	-0,3519	-0,6275		
Креатинин, мг/дл	-0,1319	+0,5993		
Кальций, мг/дл	+0,4948	+0,8936		
Фосфор, мг/дл	+0,7581	+0,9814		
Триглицериды, мг/дл	+0,7499	+0,8783		
Холистерол, мг/дл	+0,7640	+0,9031		
Глюкоза, мг/дл	-0,5144	-0,4764		

Примечание. Отмечены корреляции значущие при p < 0.05 та p < 0.01

Определенные отрицательные зависимости наблюдались по показателю нейтрофилов, эозинофилов и моноцитов во всех исследуемых группах, где коэффициенты корреляции для рассматриваемых параметров статистически достоверны.

По установленным коэффициентам корреляции открывается возможность более четко выявить ряд параметров крови, которые тесно связаны с качеством рибопосадочного материала, который оценивают через среднюю массу. Их существование показывает, что в большинстве случаев гематологические показатели дают достаточно точную оценку качества рыбопосадочного материала.

В ходе исследований выявлено, что гематологические параметры крови гибрида белого и пестрого толстолобиков соответствуют нормальному физиологическому состоянию.

Установлены достоверные коррелятивные зависимости между средней массой тела и составляющими параметрами крови по всем исследованным группам: гемоглобином в пределах от +0,7858 к +0,9919, количество эритроцитов от +0,7843 к +0,9849, лимфоцитов от +0,7821 к +0,9799, холистерол от +0,7640 к +0,9031 и триглицериды +0,7499 к +0,8783.

Анализируя полученные данные, считаем, что содержание и фракционный состав морфо-биологических показателей крови позволяет рекомендовать их как компонент индикации качества и общего физиологического состояния рыбопосадочного материала.

Полученная в процессе исследований информация представляет определенный теоретический интерес и ориентирует на целесообразность продолжения исследований начиная с раннего постембриогенеза на фоне динамики абиотических и биотических параметров среды и технологических составляющих выращивания.

Литература

- 1. Головина Н.А. Гематология прудовых рыб / Н.А. Головина, И.Д. Тромбицкий. Кишинев: Штиинца, 1989. 158 с.
- 2. Амиева В.А. Физиология рыб / В.А. Амиева, А.А. Яржомбек. М.: Легкая и пищевая промышленость, 1984. 200 с.
- 3. Житенева, Л.Д. Эколого-гематологические характеристики некоторых видов рыб: справочник/ Л.Д. Житенева, О.А Рудницкая, Т.Н Калюжная. Ростов-на-Дону: Молот, 1997. 152 с
- 4. Житенева, Л.Д. Атлас нормальных и патологически измененных клеток крови рыб / Л.Д. Житенева, Т.Г Полтавцева., О.А Рудницкая. Ростов на Дону: Кн. изд-во,1989. 112 с.
- 5. Иванова, Н.Т. Материалы к морфологии крови рыб/. Н.Т. Иванова. Ростов на Дону, 1970.-138 с.
- 6. Иванова, Н.Т. Система крови/. Н.Т. Иванова. Ростов на Дону, 1995. 155 с.
- 7. Иванова, Н.Т. Атлас клеток крови рыб/ Н.Т. Иванова. М.: Легкая и пищевая промышленность, 1999.-50 с.
- 8. Методические указания по проведению гематологического обследования рыб // Минсельхозпрод России. Москва, 1999. 16 с.
- 9. Дехтярьов П.А. Фізіологія риб: Практикум: Навч. посіб. / П.А. Дехтярьов, І.М. Шерман, Ю.В. Пилипенко, О.О. Яржомбек, С.Г.Вовченко К.: Вища шк., 2001. 128 с.
- 10. Дехтярьов П.А. Фізіологія риб: підручник / П.А. Дехтярьов, М.Ю. Євтушенко, І.М. Шерман. К.: Аграрна освіта, 2008 342 с.
- 11. Плохинский Н.А.Биометрия. Новосибирск: Изд-во СОАН СССР, 1961. 364 с.
- 12. Рокицкий П.Ф.Основы вариационной статистики для биологов. Минск, 1961. 217 с.