ПУТИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ОРОШАЕМОГО ЗЕМЛЕДЕЛИЯ

Научно-практический журнал

Выпуск № 1(57)/2015

Новочеркасск

Федеральное государственное бюджетное научное учреждение «РОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПРОБЛЕМ МЕЛИОРАЦИИ» (ФГБНУ «РосНИИПМ»)

ПУТИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ОРОШАЕМОГО ЗЕМЛЕДЕЛИЯ

Научно-практический журнал ФГБНУ «РосНИИПМ» Издается с июня 1978 года Выходит четыре раза в год

Выпуск № 1(57)/2015

Январь – март 2015 г.

РЕДАКЦИОННАЯ КОЛЛЕГИЯ:

Главный редактор – академик РАН, доктор технических наук, профессор, директор ФГБНУ «РосНИИПМ» В. Н. Щедрин

Заместитель главного редактора – кандидат сельскохозяйственных наук, ученый секретарь Т. П. Андреева

Ответственный секретарь – Е. И. Лобова

Редакторы: доктор сельскохозяйственных наук, профессор Г. Т. Балакай; доктор технических наук С. М. Васильев; доктор сельскохозяйственных наук, Ю. Ф. Снипич; кандидат сельскохозяйственных наук, Т. П. Андреева; кандидат сельскохозяйственных наук, С. А. Селицкий; кандидат сельскохозяйственных наук, О. В. Воеводин; кандидат сельскохозяйственных наук, П. А. Воеводина; кандидат сельскохозяйственных наук, Л. М. Докучаева; кандидат сельскохозяйственных наук, Р. Е. Юркова; кандидат технических наук, А. С. Штанько.

Технический редактор – Е. А. Бабичева **Литературный редактор** – А. И. Литовченко **Выпускающий** – Л. И. Юрина

Адрес редакции: 346421, Ростовская область, г. Новочеркасск, Баклановский проспект, 190.

Тел./факс: (8635) 26-74-53 http://www.rosniipm.ru/ppeoz e-mail: transfer-rosniipm@yandex.ru

Подписано в печать 11.03.2015. Формат 60×84/8. Усл. печ. л. 23,0. Тираж 500 экз. Заказ № 19.

ФГБНУ «РосНИИПМ» 346421, Ростовская область, г. Новочеркасск, Баклановский проспект, 190

Отпечатано ИП Белоусов А. Ю.

346421, Ростовская область, г. Новочеркасск, Баклановский проспект, 190 «Е»

ISSN 2313-2248

Дата выхода в свет 31.03.2015 Свободная цена

© ФГБНУ «РосНИИПМ», 2015

СОДЕРЖАНИЕ

МАТЕРИАЛЫ КОНФЕРЕНЦИИ

«Сохранение, восстановление и улучшение почв: настоящее и контуры будущего»

Аверчев А. В., Аверчева Н. А. Развитие зерновои отрасли и ее значение	
в экономике Украины	5
Чевердин Ю. И., Титова Т. В., Беспалов В. А. Особенности изменения	
морфометрических показателей черноземов в постмелиоративный период	10
Шалашова О. Ю. Влияние мелиорации удобрительно-мелиорирующими	
смесями на экологическое состояние черноземов обыкновенных деградированных	14
Балакай Г. Т., Докучаева Л. М., Юркова Р. Е., Миронченко М. С. Про-	1 1
дуктивность рисовых почв и причины снижения их плодородия	17
	1/
Юркова Р. Е., Докучаева Л. М. Новый подход к освоению черноземов	22
при орошении	22
Балакай Н. И. Влияние водной эрозии на плодородие почв	28
Пунинский В. С. Система машин как составляющая улучшения земель	
с комплексами солонцов и обеспечения импортозамещения продовольствия	34
Радевич Е. В. Влияние внесения фосфогипса на содержание тяжелых ме-	
таллов в условиях рисосеяния	43
Антонова Н. А., Домашенко Ю. Е., Васильев С. М. Влияние орошения	
на микробиологические показатели почв Ростовской области	49
Иванова Н. А., Гурина И. В. Мониторинг рекультивационного слоя золо-	
отвала после фитомелиорации	53
Ляшков М. А., Васильев С. М., Домашенко Ю. Е. Анализ системы почв	
Ростовской области	59
Галимов А. Х. Природоохранная технология сельскохозяйственного ос-	
воения горных земель различной крутизны на базе создания новых систем ороше-	
ния и методов ускоренного повышения почвенного плодородия	62
Турко С. Ю. Фитомелиорация деградированных угодий на основе техно-	02
логии выращивания перспективных видов кормовых растений	68
Чембарисов Э. И., Лесник Т. Ю., Насрулин А. Б., Чембарисов Т. Э.	00
Влияние качества оросительных вод Средней Азии на мелиоративное состояние	
	72
орошаемых земель	12
Власенко М. В., Кулик А. К. Эколого-ботанический анализ лекарственной	70
флоры Арчедино-Донского песчаного массива на основных типах местообитания	/8
Кружилин И. П., Кузнецова Н. В., Козинская О. В. Сочетание орошения	
дождеванием с агромелиоративными приемами обеспечивает сохранение и по-	0.4
вышение плодородия почвы	84
Кулик А. К., Власенко М. В. Эколого-гидрологическая оценка воздейст-	
вия сельского и лесного хозяйства на песчаные земли Верхнего Дона	89
Чембарисов Э. И., Лесник Т. Ю., Насрулин А. Б., Эргашев А. Мелиора-	
тивное состояние земель и формирование коллекторно-дренажных вод на оро-	
шаемых землях Кашкадарьинской области Республики Узбекистан	95
Шуляков Л. В. Комплексное регулирование водного и питательного	
режимов почвы при возделывании картофеля	100
Власенко М. В., Турко С. Ю. Методическая основа исследования влияния	
эдафического фактора на биоценотические процессы в искусственных кормовых	
ценозах	104

Сторчоус В. Н. Изменение свойств почвы при различных способах полива	
сада в условиях Крыма	.110
Шкутов Э. Н., Лученок Л. Н. Изменение физических свойств осущенного	
торфяного слоя в процессе длительного сельскохозяйственного использования	. 115
Герасименко А. А., Горовцов А. В. Роль цианобактерий в защите и реме-	
диации почв на примере антропогенно-преобразованных почв	. 120
Васильев Ю. И., Турко С. Ю., Овечко Н. Н. Моделирование динамики	
процессов аккумуляции мелкозема в системе лесополос и стабилизации террито-	
1 11	. 125
Гаевая Э. А., Мищенко А. Е. Сохранение и восстановление плодородия	. 120
почв эрозионноопасных склонов	131
Абакумова Л. И. Экологические аспекты озеленения сельских территорий	. 101
на комплексных каштановых почвах сухой степи	137
na kominiekcinin kamitanobih no ibah cyaon cicini	. 1 . 7
СЕЛЬСКОХОЗЯЙСТВЕННОЕ ПРОИЗВОДСТВО	
Ворожбит Н. М. Экологические факторы и их влияние на микроклимат	
животноводческих помещений	. 141
Каращук Г. В., Лавренко С. О., Рыбалкина Т. С. Влияние способа под-	
готовки рассады на урожайность сортов земляники садовой в условиях орошения	
юга Украины	. 143
Иванив Н. А., Сидякина Е. В. Эффективность выращивания позднеспе-	
	. 146
Господаренко Г. Н., Лысянский А. Л. Влияние удобрения на особенно-	
сти водопотребления сидератов и водный режим чернозема оподзоленного Пра-	
вобережной лесостепи	.151
Шадских В. А., Пешкова В. О., Кижаева В. Е., Лапшова А. Г. Эффек-	
тивность биопрепаратов при возделывании семенных посевов сои для поддержа-	
ния плодородия почв в условиях орошения сухостепной зоны Поволжья	.157
Каращук С. В., Каращук Г. В., Лавренко С. О. Энергетическая эффек-	
тивность выращивания ярового ячменя в условиях южной степи Украины	. 162
Ушкаренко В. А., Лавренко Н. Н., Лавренко С. О. Изменение физиче-	
ских свойств почвы на посевах нута в зависимости от обработки почвы и условий	
увлажнения в условиях Сухой Степи	165
Цуркан Н. В., Антипова Л. К. Экономико-энергетическая эффективность	
производства продукции многолетних трав на орошаемых землях юга Украины	169
Волокитин М. П. Влияние орошения на основные свойства черноземов	
Dollow 141 141 Estimate opometris na ochosnise esonetisa repriosestos	, .
МЕЛИОРАЦИЯ И ОХРАНА ЗЕМЕЛЬ	
Романова Л. Г., Шадских В. А., Кижаева В. Е., Лапшова А. Г. Критерии	
оценки компонентов агроландшафта, обеспечивающих экологическую устойчи-	
вость орошаемой территории	180
Хачетлов Р. М. Пути повышения эффективности мелиоративного земле-	. 100
делия в Кабардино-Балкарской Республике	196
делия в Каоардино-валкарской геспуолике	. 100
ЭКОНОМИКА МЕЛИОРАЦИИ	
Балыхина А. А. Системное моделирование рисков в платном водопользо-	
вании	192

Таблица 3 — Урожайность сортов земляники садовой в зависимости от способа подготовки рассады

В т/га

Способ подготовки расса,	ды (В)	Год иссл	едований	Среднее за 2013–2014 гг.				
		2013	2014					
Ольвия (А)								
Свежезаготовленная (контр	оль)	15,5	13,3	14,4				
Укорененная в горшках		19,9	17,9	18,9				
«Фриго»		17,3	14,9	16,1				
_		Хоней (А	A)					
Свежезаготовленная (контр	оль)	14,9	12,3	13,6				
Укорененная в горшках		19,4	17,1	17,8				
«Фриго»		16,9	14,6	15,8				
		Клери (А	1)					
Свежезаготовленная (контр	18,2	16,1	17,2					
Укорененная в горшках		24,5	22,6	23,5				
«Фриго»		21,5	19,8	20,6				
Дарселект (А)								
Свежезаготовленная (контр	16,7	14,9	15,8					
Укорененная в горшках	23,2	22,3	22,8					
«Фриго»	18,9	16,9	17,9					
HCР ₀₅ , т/га	A	0,92	0,57	0,81				
	В	0,34	0,21	0,27				

Выводы. При орошении в условиях юга Украины для получения урожайности земляники садовой на уровне 23 т/га с высокими показателями качества ягод с целью потребления в свежем виде и переработки рекомендуется выращивать сорта Клери и Дарселект с использованием рассады, укорененной в горшках.

Список использованных источников

- 1 Медведева, О. П. Земляника. О сортах. Основные различия / О. П. Медведева // Садовод и огородник. -2011. -№ 13. С. 8-9.
- 2 Выращивание садовой земляники [Электронный ресурс] Режим доступа: http:planeta2012.com.ua, 2015.

УДК 633.15:631.527.5:631.67(477.7)

Н. А. Иванив, Е. В. Сидякина

Херсонский государственный аграрный университет, Херсон, Украина

ЭФФЕКТИВНОСТЬ ВЫРАЩИВАНИЯ ПОЗДНЕСПЕЛЫХ ГИБРИДОВ КУКУРУЗЫ В УСЛОВИЯХ ОРОШЕНИЯ ЮГА УКРАИНЫ

Один из самых эффективных приемов снижения энергозатратности выращивания кукурузы на зерно в условиях орошения — использование гибридов с высокой адаптивной способностью. При этом оценку потенциала гибрида целесообразно проводить в экологических испытаниях, в которых можно выяснить адаптивность к почвенно-климатическим условиям, установить реакцию генотипа на варьирование факторов внешней среды и определить наиболее перспективные образцы для конкретных регионов. Изучение реакции позднеспелых гибридов кукурузы при орошении в условиях четырех агроэкологических пунктов Херсонской области (Украина) показало, что выращивание гибрида Перекоп СВ позволит стабилизировать уровень урожайности,

Сельскохозяйственное производство

минимизировать расходы и получить максимальную прибыль на фоне высокой энергетической эффективности. При оптимальном агротехническом обеспечении и уборке урожая в початках (без принудительного искусственного досушивания) данный гибрид обеспечит получение высоких показателей урожайности зерна (102,4—121,0 ц/га), уровня рентабельности (2,3—7,2%) и энергетического коэффициента (1,84—2,35).

Ключевые слова: кукуруза, гибрид, группа спелости, урожайность, экологический пункт исследований, экономическая эффективность, энергетическая эффективность.

Введение. Агроэкологические основы районирования сельскохозяйственных культур в последнее время привлекают пристальное внимание растениеводов. Известно, что для получения высокой урожайности с высокими показателями качества продукции в той или иной почвенно-климатической зоне необходимы определенные параметры метеорологических и почвенных условий.

Несовершенная технология и недостаточно тщательно подобранный тип гибрида являются основной причиной низкой урожайности и чрезвычайно высокого уровня ее колебаний как по годам, так и по отдельным территориям. Каждый гибрид может иметь определенные преимущества в той или иной агроклиматической зоне при определенном технологическом обеспечении. Поэтому научным работам, которые направлены на оптимизацию сортового состава для конкретного региона, уделяется большое внимание [1, 2].

Существуют различные способы выбора лучших гибридов для конкретных условий выращивания, однако большой выбор гибридов не дает качественной характеристики отдельных генотипов, поэтому процесс выбора должен быть системным [3]. Наиболее обоснованным и совершенным средством оценки сортового состава являются изучение новейших генотипов в конкретных агроэкологических условиях, определение параметров проявления урожайности и экологической стабильности [4, 5].

Материал и методы. Основной задачей проведенных авторами исследований было изучение реакции позднеспелых гибридов кукурузы Перекоп СВ и Борисфен 600СВ на агроэкологические параметры выращивания при орошении в условиях Херсонской области (Украина). Опыты проводили в течение 2006—2008 гг. в четырех пунктах Херсонской области (в трех административных районах: Днепровском, Каховском, Ивановском). Границы районов не соответствуют базовым элементам разделения по почвенно-экологическим требованиям зонального районирования, поэтому подробную характеристику опытных участков приводим по специальным разработкам [6].

В полевых опытах изучали следующие факторы и их варианты:

- фактор А экологические пункты исследований:
- а) опытное поле Херсонского государственного аграрного университета (Ивановский район; подзона сухостепная сухая; педопарцелла 3.29; $\Gamma TK_{V-IX} = 0.51-0.60$);
- б)опытное поле Института земледелия южного региона (Днепровский район; подзона сухостепная сухая; педопарцелла 3,15; $\Gamma TK_{V-IX} = 0,51-0,60$);
- в) опытное хозяйство «Каховское» (Каховский район; подзона степная южноумеренная; педопарцелла 2,27; $\Gamma TK_{V-IX} = 0,61-0,66$);
- Γ) опытное хозяйство «Асканийское» (Каховский район; подзона степная южноумеренная; педопарцелла 2,29; $\Gamma TK_{V-IX} = 0,61-0,66$);
 - фактор В гибриды кукурузы: Перекоп СВ, Борисфен 600СВ.

Полевые опыты были заложены в четырехкратной повторности. Учетная площадь участков составляла 50 m^2 . Во время осуществления исследований руководствовались общепринятыми методиками проведения полевых опытов.

Поливы проводили агрегатом ДДА-100МА (ОП Института земледелия южного региона) и дождевальной установкой «Фрегат» (ГПОХ «Асканийское», ГПОХ «Каховское», ОП Херсонского ГАУ).

Сельскохозяйственное производство

Сбор и учет урожая проводили в фазу полной спелости зерна (конец третьей декады сентября) вручную путем взвешивания початков со всей учетной площади участков.

Предшественником кукурузы в орошаемом севообороте была соя. Технология возделывания была общепринятой, кроме факторов, которые были поставлены на изучение

Результаты и обсуждение. Результаты проведенных исследований показали, что наиболее высоким агроклиматический потенциал был в опытном хозяйстве «Асканийское», в котором урожайность зерна кукурузы в среднем составила 121,0–123,6 ц/га (таблица 1).

Таблица 1 – Урожайность позднеспелых гибридов кукурузы на зерно в разных почвенно-экологических пунктах

В ц/га

Экологический пункт	Гибрид	Урожайность				
исследований	(фактор В)	2006 г.	2007 г.	2008 г.	средняя	
(фактор А)						
Ивановский р-н, опытное	Перекоп СВ	116,7	111,5	107,6	111,9	
поле ХГАУ	Борисфен 600СВ	118,2	116,7	110,6	115,2	
Институт земледелия	Перекоп СВ	109,3	100,0	97,9	102,4	
южного региона	Борисфен 600СВ	108,3	98,1	97,0	101,1	
Опытное хозяйство «Ка-	Перекоп СВ	75,6	70,3	69,3	71,7	
ховское»	Борисфен 600СВ	60,7	55,9	55,4	57,3	
Опытное хозяйство «Ас-	Перекоп СВ	126,3	120,8	115,9	121,0	
канийское»	Борисфен 600СВ	131,0	121,9	118,0	123,6	
Применения НСВ за годи месторомий состориям или факторо А от 2.2 до						

Примечание – HCP_{05} за годы исследований составляла для фактора A от 2,3 до 3,2; для фактора B – от 3,7 до 5,1; для взаимодействия AB – от 7,3 до 10,2.

Значительно меньшую урожайность получили в опытном хозяйстве «Каховское» (57,3–71,7 ц/га), хотя и находились эти хозяйства в одном административном районе. Уровень урожайности в двух других пунктах исследований (на опытных полях ХГАУ и Института земледелия южного региона) был промежугочным (соответственно 111,9–115,2 и 101,1–102,4 ц/га). Колебания урожайности гибридов кукурузы в пределах одного административного района и одной подзоны с амплитудой в 57,8 ц/га говорят о существенном агротехническом влиянии на раскрытие потенциальных возможностей генотипа. И если в условиях высокой агротехники существуют предпосылки для четкого определения урожайности в зависимости от группы спелости, то невыполнение агротехнических требований при выращивании кукурузы приводит к нарушению ранжирования гибридов относительно их группы спелости и потенциала продуктивности. Самая низкая урожайность была зафиксирована в подзоне степной южно-умеренной, что не соответствует биоклиматическому потенциалу.

Нашими исследованиями не было предусмотрено определение просчетов в технологии возделывания. Однако результаты полученных данных об урожайности свидетельствуют о системности нарушений агротехники в опытном хозяйстве «Каховское», а также о постоянной контролируемости технологии возделывания в других пунктах исследований.

Максимальную урожайность зерна (от 115,2 до 123,6 ц/га) на опытном поле ХГАУ и в опытном хозяйстве «Асканийское» обеспечил гибрид Борисфен 600СВ. Его урожайность на 2,6–3,3 ц/га превысила урожайность гибрида Перекоп СВ. В Институте земледелия южного региона и опытном хозяйстве «Каховское», наоборот, наблюдали преимущество гибрида Перекоп СВ: урожайность зерна оказалась выше на 1,3–14,4 ц/га. Максимальную разницу в урожайности зерна между выращиваемыми гибридами кукурузы наблюдали в опытном хозяйстве «Каховское». В других агроэкологических пунк-

тах исследований она была несущественной и находилась в пределах ошибки опыта.

Расчет экономической эффективности выращивания гибридов кукурузы в условиях орошения на юге Украины проводили по ценам, которые фактически сложились в хозяйствах южного региона страны на 1 сентября 2009 г. (таблица 2).

Таблица 2 – Экономическая эффективность выращивания позднеспелых гибридов кукурузы (среднее за 2006–2008 гг.)

Экологический пункт исследований (фактор А)	Гибрид (фактор В)	Стоимость валовой продук- ции, грн./га	Производст- венные затра- ты, грн./га	Себестои- мость, грн./ц	Чистая при- быль, грн./га	Уровень рентабельности, %
Ивановский р-н,	Перекоп СВ	10071	9390	83,9	681	7,2
опытное поле ХГАУ	Борисфен 600СВ	10368	10059	87,3	309	3,1
Институт земледелия	Перекоп СВ	9216	9010	88,0	206	2,3
южного региона	Борисфен 600СВ	9099	8957	88,6	142	1,6
Опытное хозяйство	Перекоп СВ	6453	7112	99,2	-659	-9,3
«Каховское»	Борисфен 600СВ	5157	7202	125,7	-2045	-28,4
Опытное хозяйство	Перекоп СВ	10890	10318	85,3	572	5,5
«Асканийское»	Борисфен 600СВ	11124	10377	84,0	747	7,2

Меньшую себестоимость 1 ц зерна, большую чистую прибыль и уровень рентабельности во всех агроэкологических пунктах исследований обеспечил гибрид Перекоп СВ. Исключение составляет опытное хозяйство «Асканийское», в котором экономические показатели исследуемых гибридов существенно не отличались.

Выращивание обоих гибридов в опытном хозяйстве «Каховское» оказалось убыточным, что обусловлено очень низким уровнем урожайности и высокими показателями уборочной влажности зерна.

Наименьшую себестоимость выращенной продукции (83,9 грн./ц), высокую чистую прибыль (681 грн./га) и максимальный уровень рентабельности (7,2 %) обеспечило выращивание гибрида Перекоп СВ на опытном поле ХГАУ Ивановского района Херсонской области.

Затраты энергии при выращивании гибрида Борисфен 600CB в среднем на 3,7 ГДж/га превышали аналогичные затраты для гибрида Перекоп СВ (таблица 3). Показатели прихода и прироста энергии существенно колебались в зависимости от пункта экологического исследования и гибридного состава кукурузы. Так, на опытном поле ХГАУ и в опытном хозяйстве «Асканийское» меньшим приходом энергии с урожаем и ее приростом характеризовался гибрид Перекоп СВ, а в Институте земледелия южного региона и опытном хозяйстве «Каховское» – гибрид Борисфен 600СВ.

Таблица 3 – Энергетическая эффективность выращивания позднеспелых гибридов кукурузы (среднее за 2006–2008 гг.)

Экологический пункт	Гибрид	Затраты	Приход	Прирост	Энергети-
исследований	(фактор В)	энергии,	энергии с	энергии,	ческий ко-
(фактор А)		ГДж/га	урожаем,	ГДж/га	эффициент
			ГДж/га		
1	2	3	4	5	6
Ивановский р-н,	Перекоп СВ	47,7	147,9	100,3	2,10
опытное поле ХГАУ	Борисфен 600СВ	51,4	152,3	100,9	1,96
Институт земледелия	Перекоп СВ	47,7	135,4	87,7	1,84
южного региона	Борисфен 600СВ	51,4	133,7	82,3	1,60

Продолжение таблицы 3

1	2	3	4	5	6
Опытное хозяйство	Перекоп СВ	47,7	94,8	47,1	0,99
«Каховское»	Борисфен 600СВ	51,4	75,8	24,4	0,47
Опытное хозяйст-	Перекоп СВ	47,7	160,0	112,3	2,35
во«Асканийское»	Борисфен 600СВ	51,4	163,4	112,0	2,18

Минимальный приход энергии с урожаем (75,8 ГДж/га) отмечен у гибрида Борисфен 600СВ в опытном хозяйстве «Каховское», максимальный (163,4 ГДж/га) — у этого же гибрида в опытном хозяйстве «Асканийское». Разница между исследуемыми гибридами по приросту энергии колебалась в пределах от 0,3 ГДж/га в опытном хозяйстве «Асканийское» до 22,7 ГДж/га в опытном хозяйстве «Каховское». Наибольшее значение прироста энергии (112,3 ГДж/га) зафиксировано в варианте с гибридом Перекоп СВ при выращивании в опытном хозяйстве «Асканийское».

Важным показателем энергетического анализа является энергетический коэффициент, отражающий соотношение между затратами энергии на выращивание продукции и количеством энергии, полученной с урожаем. По данному показателю во всех агроэкологических пунктах испытания более эффективным оказался гибрид Перекоп СВ.

Наименьшие значения энергетического коэффициента установлены при выращивании исследуемых гибридов в опытном хозяйстве «Каховское» (0,99 для Перекопа СВ и 0,47 для Борисфена 600СВ), максимальные — в опытном хозяйстве «Асканийское» (2,35 для Перекоп СВ и 2,18 для Борисфена 600СВ).

Выводы. В благоприятных почвенно-экологических условиях при оптимальном агротехническом обеспечении и уборке урожая в початках (без принудительного искусственного досушивания) из группы позднеспелых рекомендуется выращивать гибрид кукурузы Перекоп СВ, который обеспечит получение высоких показателей урожайности зерна (102,4–121,0 ц/га), уровня рентабельности (2,3–7,2 %) и энергетического коэффициента (1,84–2,35).

Список использованных источников

- 1 Хромяк, В. М. Оцінка агрокліматичного потенціалу кукурудзи на Луганщині / В. М. Хромяк // Збірник наукових праць Луганського НАУ. Луганськ: ЛНАУ, 2005. N 47(70). С. 182—188.
- 2 Агроекологічні моделі гібридів кукурудзи ФАО 190-300 для південного Степу / В. Г. Найдьонов, М. О. Іванів, О. О. Нетреба, Ю. О. Лавриненко // Енергозберігаючі технології в землеробстві за ринкових умов господарювання: матер. наук.-практ. конф., Чабани, 27–29 лист. 2006 р. Київ: ЕКМО, 2006. С. 55–57.
- 3 Селекційно-технологічні аспекти підвищення стійкості виробництва зерна кукурудзи в умовах південного Степу / Ю. О. Лавриненко, С. В. Коковіхін, В. Г. Найдьонов, О. О. Нетреба // Бюлетень Інституту зернового господарства. 2006. № 28–29. С. 136–143.
- 4 Андриевский, С. Как выбрать гибриды кукурузы и сэкономить при этом немалые деньги / С. Андриевский // Зерно. -2006. -№ 4. C. 36–39.
- 5 Адаптивна характеристика нових гібридів кукурудзи / Ю. О. Лавриненко, С. В. Коковіхін, С. Я. Плоткін, В. Г. Найдьонов // Таврійський науковий вісник: наук. журн. Херсон: Айлант, 2007. Вип. 52. С. 76–82.
- 6 Демьохін, В. А. Земельні ресурси Херсонської області базовий фактор регіональної економічної політики / В. А. Демьохін, В. Г. Пелих, М. І. Полупан. Київ: Аграрна наука, 2007.-152 с.